
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
It is well known that most of biological agents tend to emit specific fluorescence spectra, which in principle allow their detection and identification, if excited by light of the appropriate wavelength. For these reasons, the detection of the UVLight Induced Fluorescence (UV-LIF) emitted by BAs is particularly promising. On the other hand, the stand-off detection of BAs poses a series of challenging issues; one of the most severe is the automatic discrimination between various agents which emit very similar fluorescence spectra.
In this paper, a new data analysis method, based on a combination of advanced filtering techniques and Support Vector Machines, is described. The proposed approach covers all the aspects of the data analysis process, from filtering and denoising to automatic recognition of the agents. A systematic series of numerical tests has been performed to assess the potential and limits of the proposed methodology. The first investigations of experimental data have already given very encouraging results.
First open field measurements with a portable CO2 lidar/dial system for early forest fires detection
Raman water vapour concentration measurements for reduction of false alarms in forest fire detection
View contact details
No SPIE Account? Create one