Conjugated dendrimers provide an excellent molecular architecture for tuning material properties for organic light emitting diodes. Here we demonstrate a modular approach allowing highly efficient fluorescent and phosphorescent emissive chromophores to be used to make red, green and blue solution-processed light emitting diodes. The choice of a common dendritic architecture ensures good solubility and film forming properties irrespective of the choice of core unit. In addition, this architecture allows blending of dendrimers with different cores without phase separation. We show that blending provides a simple but powerful way of tuning the color of dendrimer LEDs from deep blue to blue-green, and from green to red with little impact on the device properties.
Light-emitting dendrimers are a new distinct class of material for OLEDs. Dendrimers consist of a light-emitting core, dendrons and surface groups. Dendrimers are designed for solution coating and have a number of advantages over conjugated polymers. We report our recent results for solution processed green dendrimer OLEDs. The OLEDs were fabricated by spin-coating a blend of first generation dendrimer/host material followed by the evaporation of a hole blocking layer and a LiF/Al cathode. Power efficiencies of 50 lm/W at practical brightness levels were achieved for these structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.