As recently demonstrated [T. Bagci, et al., Nature 507, 81 (2013)], an opto-electro-mechanical system formed by a nanomembrane, capacitively coupled to an LC resonator and to an optical interferometer, may be employed for the high{sensitive optical readout of rf signals. Here we show through a proof of principle device how the bandwidth of such kind of transducer can be increased by controlling the interference between the electromechanical interaction pathways of a two{mode mechanical system. The transducer reaches a sensitivity of 10 nV=Hz1/2 over a bandwidth of 5 kHz and a broader band sensitivity of 300 nV=Hz1/2 over a bandwidth of 15 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multi-mode transducer can achieve a bandwidth significantly larger than that of a single-mode one.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.