Stimulated Raman scattering (SRS) microscopy enables the imaging of molecular events on a human subject in vivo, such as filtration of topical drugs through the skin and intraoperative cancer detection. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.
High resolution volumetric stimulated Raman scattering (V-SRS) imaging allows a precise measurement of chemical distribution in a three-dimensional (3-D) complex biological system. To compile a stack of multiplane images, current methods such as using piezo objective positioners or tunable lenses either yield low scanning speed, disturbance of specimen, or significant aberrations. Here, we develop a V-SRS microscope with a high-speed MEMS deformable mirror (DM) which has 140 actuators and a frame rate of 20 kHz using hardware-trigger. The DM conjugated with the objective pupil plane enables wavefront shaping at reflectance mode and remote focusing of both pump and Stokes beams on the sample. The depth scan range can reach tens of micrometers by using 40X and 25X objectives. Multiple 3-D cancerous cell images are obtained. We expect the V-SRS to have great potential to enable label-free studies of cell metabolism, brain function, and developmental biology.
Wide-field fluorescence microscopy is generally limited to either small volumes or low temporal resolution. We present a microscope add-on that provides fast, light-efficient extended depth-of-field (EDOF) using a deformable mirror of update rate 20kHz. Out-of-focus contributions in the raw EDOF images are suppressed with a deconvolution algorithm derived directly from the microscope 3D optical transfer function. Demonstrations of the benefits of EDOF microscopy are shown with GCaMP-labeled mouse brain tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.