Parametric response mapping (PRM) is a voxel-based quantitative CT imaging biomarker that measures the severity of chronic obstructive pulmonary disease (COPD) by analyzing both inspiratory and expiratory CT scans. Although PRM-derived measurements have been shown to predict disease severity and phenotyping, their quantitative accuracy is impacted by the variability of scanner settings and patient conditions. The aim of this study was to evaluate the variability of PRM-based measurements due to the changes in the scanner types and configurations. We developed 10 human chest models with emphysema and air-trapping at endinspiration and end-expiration states. These models were virtually imaged using a scanner-specific CT simulator (DukeSim) to create CT images at different acquisition settings for energy-integrating and photoncounting CT systems. The CT images were used to estimate PRM maps. The quantified measurements were compared with ground truth values to evaluate the deviations in the measurements. Results showed that PRM measurements varied with scanner type and configurations. The emphysema volume was overestimated by 3 ± 9.5 % (mean ± standard deviation) of the lung volume, and the functional small airway disease (fSAD) volume was underestimated by 7.519 % of the lung volume. PRM measurements were more accurate and precise when the acquired settings were photon-counting CT, higher dose, smoother kernel, and larger pixel size. This study demonstrates the development and utility of virtual imaging tools for systematic assessment of a quantitative biomarker accuracy.
Pulmonary emphysema is a progressive lung disease that requires accurate evaluation for optimal management. This task, possible using quantitative CT, is particularly challenging as scanner and patient attributes change over time, negatively impacting the CT-derived quantitative measures. Efforts to minimize such variations have been limited by the absence of ground truth in clinical data, thus necessitating reliance on clinical surrogates, which may not have one-to-one correspondence to CT-based findings. This study aimed to develop the first suite of human models with emphysema at multiple time points, enabling longitudinal assessment of disease progression with access to ground truth. A total of 14 virtual subjects were modeled across three time points. Each human model was virtually imaged using a validated imaging simulator (DukeSim), modeling an energy-integrating CT scanner. The models were scanned at two dose levels and reconstructed with two reconstruction kernels, slice thicknesses, and pixel sizes. The developed longitudinal models were further utilized to demonstrate utility in algorithm testing and development. Two previously developed image processing algorithms (CT-HARMONICA, EmphysemaSeg) were evaluated. The results demonstrated the efficacy of both algorithms in improving the accuracy and precision of longitudinal quantifications, from 6.1±6.3% to 1.1±1.1% and 1.6±2.2% across years 0 to 5. Further investigation in EmphysemaSeg identified that baseline emphysema severity, defined as >5% emphysema at year 0, contributed to its reduced performance. This finding highlights the value of virtual imaging trials in enhancing the explainability of algorithms. Overall, the developed longitudinal human models enabled ground-truth based assessment of image processing algorithms for lung quantifications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.