In 2021 Lowell Observatory began preparations for a new remotely operated 1.0-m class telescope facility. Site studies were conducted and a historic observatory on Anderson Mesa near Flagstaff, Arizona was selected to house a PlaneWave Instruments PW1000 1-meter telescope. This facility previously housed the 13” Pluto Discovery Telescope and the 23” Lowell Observatory Near-Earth-Object Search (LONEOS) telescope. The equatorial piers were modified to accept a custom vibration optimized bridge structure to support the dome-centered Alt/Az telescope mount. Many other updates were installed including network, power, dome repairs, access platforms, and general remodeling. The commissioning instrument selection process resulted in the purchase of the Teledyne-PI SOPHIA 4096B CCD camera. Further custom components were needed to integrate the camera to the Nasmyth port of the telescope including a lightweight filter wheel, detector alignment mechanism, payload support assembly, and cable management/de-rotation limits. Commissioning of the facility started in late 2023 and it has already been used successfully for a number of occultation events. The full SOPHIA instrument assembly, including the custom filter wheel, is on track to be completed in 2025. Future facility plans such as power outage recovery, robotic observing software, and second instrument planning are currently in progress.
The signal induced by a temperate, terrestrial planet orbiting a Sun-like star is an order of magnitude smaller than the host stars’ intrinsic variability. Understanding stellar activity is, therefore, a fundamental obstacle in confirming the smallest exoplanets. We present the Lowell Observatory Solar Telescope (LOST), a solar feed for the EXtreme PREcision Spectrometer (EXPRES) at the 4.3-m Lowell Discovery Telescope (LDT). EXPRES is one of the newest high-resolution spectrographs that accurately measure extreme radial velocity. With LOST/EXPRES, we observe disk-integrated sunlight autonomously throughout the day. In clear conditions, we achieve a R ∼ 137, 500 optical spectrum of the Sun with a signal-to-noise of 500 in ∼ 150s. Data is reduced using the standard EXPRES pipeline with minimal modification to ensure the data are comparable to the observations of other stars with the LDT. During the first three years of operation, we find a daily RMS of 71cm/s. Additionally, having two EPRV spectrometers located in Arizona gives us an unprecedented opportunity to benchmark the performance of these planet-finders. We find a RMS of just 55cm/s when comparing data taken simultaneously with EXPRES and NEID.
The Quad-camera Wavefront-sensing Six-channel Speckle Interferometer (QWSSI) is a new speckle imaging instrument available on the 4.3-m Lowell Discovery Telescope (LDT). QWSSI is built to efficiently make use of collected photons and available detector area. The instrument images on a single Electron Multiplying CCD (EMCCD) at four wavelengths in the optical (577, 658, 808, and 880nm) with 40nm bandpasses. Longward of 1µm, two imaging wavelengths in the NIR are collected at 1150 and 1570nm on two InGaAs cameras with 50nm bandpasses. All remaining non-imaging visible light is then sent into a wavefront EMCCD. All cameras are operated synchronously via concurrent triggering from a timing module. With the simultaneous wavefront sensing, QWSSI characterizes atmospheric aberrations in the wavefront for each speckle frame. This results in additional data that can be utilized during post-processing, enabling advanced techniques such as Multi-Frame Blind Deconvolution. The design philosophy was optimized for an inexpensive, rapid build; virtually all parts were commercial-off-the-shelf (COTS), and custom parts were fabricated or 3D printed on-site. QWSSI’s unique build and capabilities represent a new frontier in civilian high-resolution speckle imaging.
Lowell Observatory's Lowell Discovery Telescope (LDT) is a 4.3-m telescope designed and constructed for optical and near infrared astronomical observation. We examine the performance of the primary and secondary mirror support systems during scientific operations, over the first six years of science operations. During that time we have redesigned the sacrificial pins in the primary mirror lateral support system, and developed a method to re-calibrate the load cell sensors used in both the primary and secondary mirror supports.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.