With the development of the fourier ptychography in microscopy imaging, more and more researchers consider applying fourier ptychography in long-distance imaging. However being different from microscopic imaging, long distance fourier ptychographic imaging will face more challenges, one of which is the source image quality. In this manuscript, the influence of the source image quality on camera scanning FP imaging will be investigated and simulated. In the first part, the calibration aims to solve the influence of unenenly illumination. After that, a poisson-gaussian mixed noise model based denoising is uesd and could effectively suppresses the noise through parameter estimation. Finally, Phase correalation regisitrtion has to be used to correct the mismatch between adjacent images caused by camera scanning mode. The simulation results demonstrate the effectiveness of the preprocessing methods and could make FP more robust.The signal to noise ratio could reach to 40.5dB while obtained 5×improvement in resolution.
Fourier ptychography (FP) has emerged as a powerful tool to improve spatial resolution. In order to apply FP technique to long-distance imaging for example remote sensing, many factors have to be overcome, such as diffraction, noise, turbulence and so on. In this paper, we mainly aims at studying the influence of atmospheric turbulence on FP technique, and using iterative algorithms to restore high-legible image and eliminating the residual errors, so it will meet or reach the diffraction limit of imaging system. The optical imaging systems which work in atmospheric circumstance will face the problem of imaging through atmospheric turbulence, which causing the blurring of image and badly impact the imaging capability of optical systems. We combine the FP with the theory of adaptive optics to achieve the effective recovery of the long-range target, which is subject to the effect of atmospheric turbulence. In this work, we firstly introduce a Fourier Series (FS) atmospheric phase screen generator to simulate the atmospheric-induced wave front phase distortions and represent the wave front phase as a two dimensional periodic function. Both the spatial and temporal correlations between wave-front phase screens separated by time and/or angle are properly modeled. And using the adaptive optics, we complete the correction of the atmospheric turbulence in large distance imaging through the developed algorithm. Then we propose using laser arrays coupled with coherent illumination as an effective method of improving spatial resolution in long distance images. We emulate a laser arrays realized by optical fiber conduction and also show that appropriate phase retrieval based reconstruction algorithm which can be used to effectively recover the lost high resolution details from the multiple low resolution acquired images. Finally we analyze the effects of the atmospheric turbulence on the reconstructed image quality. The results prove that under the influence of atmospheric turbulence at outer scale of 1-m, inner scale of 0.1-m, Fourier ptychographic reconstruction can obtain good image quality for object 200 meters far away. The spatial resolution is increased six-fold.
Space optical remote sensors play an important role in earth observation, space situation awareness and astronomy exploration. The optical resolution of space remote sensing system is constantly improved. Several new techniques for realizing ultra-high resolution of spatial optical remote sensors are reviewed. The research status and application prospects of these new technologies are discussed, mainly including synthetic aperture optical system, Fourier ptychography and intensity correlation imaging. The critical technical problems of these new technologies in spacebased and ground-based optical remote sensing engineering are summed up.
Synthetic aperture lidar is a new ultra-high resolution optical imaging instrument, but its reception field is very narrow which is subject to the "antenna theory". In this paper, the antenna efficiency theory is used to explain the antenna theory and the method of enlarging the field of view of the synthetic aperture laser radar. Then the increase range of the field angle of the three methods is deduced by heterodyne efficiency simulation. The simulation results show that the focal plane heterodyne detection optical path of the wide-beam local oscillator beam focal plane has the ability to improve the heterodyne efficiency of the edge field of view by reducing the heterodyne efficiency of the central field of view. The focal plane heterodyne detection optical path of the array detector requires the detector whose pixel size less than 3 times Airy spot radius covers the whole field of view, which can increase the maximum 1.83N times compared to the antenna theory. The effective field of the pupil plane heterodyne detection optical path of the array detector has nothing to do with the magnification of the telescope, the pupil diameter, the size of the detector, etc., which can be increased by N times as compared with the antenna theory.
The thermal stability of optical antennas is a key parameter determining the performance of satellite optical communication links. The effects of uniform temperature changes on the performance of a Cassegrain optical antenna are discussed. In addition, a simple theoretical model is proposed to describe the defocusing distance and wavefront aberration (power) as a function of temperature. Through the theoretical model, the thermal stability can be quickly assessed in the optical design stage. The alignment data and thermal experimental results are consistent with the theoretical model.
That minimizing the mass of space optical remote sensor at the same time guaranteeing of structural rigidity and surface shape accuracy, became a new critical research topic. This paper achieves detailed design of meniscus rectangular lens body structure by taking the choice of materials, design of supporting structure and lightweight form of mirror into account. And we established lightweight concrete of the mirror under self-weight by the method of topological optimization design. For the optimization, we used a 3-D model of the rectangular mirror and calculated based on that making minimum weight of the mirror as an objective function constrained by the displacement of the mirror surface. Finally finite element analysis method was adopted to get the optimization results analyzed and compared with the traditional triangular lightweight model. Analysis results prove that: the new mirror is superior to the traditional model in surface accuracy and structural rigidity, PV value, RMS value and the lightweight rate. With enough high dynamic-static stiffness and thermal stability, this kind of mirror can meet the demand under the self-weight and the random vibration environment respectively. So this article puts forward a new idea in the lightweight design of rectangular mirror.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.