We present a design and detailed fabrication of periodic and quasi-periodic plasmonic arrays including infrared scattering, patterning stripe, particle, and hole arrays with large periodicities for longwave IR scattering, and experimental reflectivity and backwards scattering from these metamaterials. We experimentally verify LWIR and other infrared diffraction from sparser arrays and arrays of holes in plasmonic metals. We simulate, using critical coupling analytical models and numerical algorithms, the reflectivity, scattering, etc. of these metamaterial arrays, and compare to the laser-based measurements. We also investigate a hole array in a plasmonic material (Ag).We find plasmonic resonances at both the air-Ag and Ag-substrate interfaces to be present, increasing transmission via the Extraordinary Optical Transmission effect, which may be tuned by an electromagnetic field to shift the resonance position, and in the future may enable novel tunable rectification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.