Mid-infrared liquid sensing on the chip-scale is a newly emerging field of research, especially with respect to fully monolithic integrated devices. They enable addressing applications scenarios in chemical reaction monitoring and real-time sensing, which were so far prevented by the existing much more bulky technology (e.g. FTIR-based systems). In this work we present a quantum cascade laser (QCL), QC detector (QCD) and novel type of midinfrared plasmonic waveguide that are integrated into one substrate and which we use in real-time protein sensing and residual water in solvent measurements. Furthermore, we present how this rather simple linear geometry can be further improved by implementing other (more spectrally broadband) materials such as Germanium and integrating surface-passivation and -functionalization for improving sensing capabilities. In the last part we will demonstrate two pathways for introducing plasmonic mode-guiding along the chip-surface, which is the key to realizing much more complex geometries including integrating more active and passive elements into one PIC.
The mid-IR band recently attracted great interest for future wireless communication due to its low attenuation and high tolerance against atmospheric perturbations. Recent advances in monolithic integration of same-wavelength quantum cascade lasers (QCLs) and detectors (QCDs) paved the way for a new generation of functional photonic integrated circuits. In this context, integrating novel mid-IR plasmonic waveguides has been highly suitable for realizing efficient chip-scale optical links between different active components. Here we report on developing a mid-IR on-chip heterodyne receiver. This includes the first demonstration of plasmonic waveguides for on-chip beam-guiding in the long-wave infrared and novel high-performance QCLs and QCDs.
Mid-infrared chemical sensors based on quantum cascade (QC) devices offer improved sensitivity, portability and costs compared to FTIR-based spectrometers. In this work, we combine for the first time a broadband external-cavity QC laser (EC-QCL) with a spectrally tailored QC detector (QCD) for broadband detection of bovine milk proteins including β-lactoglobulin, α-lactalbumin and casein. We analyze concentrations between 0.25-15 g/L in a 12.5-µm transmission flow cell in the amide-I and -II band (~1730-1470 cm-1) and obtain: a RMS noise-level of 0.067 mAU, a limit-of-detection of ~0.09 g/L, excellent agreement with FTIR absorbance-spectra and similar performance as much more bulky high-end FTIR-spectrometers.
Mid-infrared optical sensors integrating plasmonic waveguides and quantum cascade optoelectronics are an emerging field of research leading to promising results in chemical sensing, environmental monitoring, and biomedical diagnosis. In this work, we investigate TiO2 as waveguiding material for mid-infrared surface plasmon polariton waveguides and show its potential for integrated sensors. Simulations reveal suitable TiO2 dimensions and diffraction grating couplers for ~4.3 µm light. Following these theoretical considerations, we fabricated such devices monolithically integrated with quantum cascade detectors (QCDs) and present their characterization. We further discuss their application in innovative biosensing experiments including glucose detection.
Semiconductor-loaded plasmonic (SLSPP)-waveguides are a very efficient link for optoelectronic devices, facilitating miniaturized photonic integrated circuits. However, for long-wave infrared applications (8-12 µm), the material selection is challenging as most commonly used mid-IR materials absorb in this region. Therefore, we selected and investigated the properties of germanium in a hybrid semiconductor-metal-configuration to overcome these limitations. The experimental characterization of Si(substrate)-Au-Ge fabricated SLSPP-waveguides show very good agreement with FEM-simulations. Moreover, the realized devices offer low losses between 8.8 and 22 dB/mm (single device) and even within 8.8-15 dB/mm (multiple devices), respectively, for the entire investigated octave-spanning 5.6 – 11.2 µm range.
We present a novel InGaAs/InAlAs/InP quantum cascade detector (QCD) operating in the long wave infrared (LWIR) range, crucial for the exploitation of new free-space optical telecommunication channels at wavelengths between 8-12 µm. The comparison of differently sized detector ridges, processed on substrates with a 15-period as well as a single-period design, allows a characterization of the spectral photocurrent and a comparison of their performance in terms of sensitivity, spectral responsivity, detector noise etc. The goal is to distinguish design guidelines for the best candidate to establish a monolithic-integrated heterodyne detection system, able to secure high-speed and low-noise free-space data transmission.
In this work we monolithically integrate a quantum cascade laser (QCL) and detector (QCD) addressing the same wavelengths lambda=1550-1650 cm-1 for liquid spectroscopy. QCL and QCD are combined using a 50-100 µm-long dielectric-loaded surface-plasmon-polariton (DLSPP) waveguide, which typically guides >>90% of the mode outside of the cavity. We show the analysis of the protein bovine serum albumin (BSA) and its denaturation process between 25°C-90°C in real time in a microfluidic cell (60 µl) for 20-60 mg/ml BSA-concentrations. To further test the sensor-robustness, we directly submerge it into a beaker and detect H2O up to 35%-40%, solved in isopropyl alcohol.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.