The Evanescent Wave Coronagraph uses a focal plane mask comprising a lens and a prism placed in contact so that frustrated total internal reflection can occur - the principle governing starlight attenuation. This type of Lyot coronagraph has three main capabilities: i) the mask adapts itself to the wavelength, ii) the size of the mask is adjustable by pressure adjustment, and iii) both the light coming from the star and companion can be collected simultaneously. Previous experimental results, obtained without adaptive optics and in unpolarized light, showed a raw contrast of 10−4 at 3 λ/D in the I-band and at 4 λ/D in the R-band. Its performance has been limited so far by uncorrected residual aberrations of the optical bench that generate speckles close to the inner working angle. To study the mask performances close to the diffraction limit and compare them with theoretical models, a deformable mirror is installed in the optical path of the testbed to perform wavefront correction. In this work, we report the results obtained in the laboratory using this upgraded setup. We show the preliminary results of correcting the non-common path aberrations using the scientific camera as the wavefront sensor and compare them with expected theoretical performances. The corrections are applied after finding the optimal commands that maximize the variance at the detector plane.
The Evanescent Wave Coronagraph (EvWaCo) is an achromatic coronagraph mask with adjustable size over the spectral domain [600nm, 900nm] that will be installed at the Thai National Observatory. We present in this work the development of a bench to characterise its Extreme Adaptive Optics system (XAO) comprising a DM192 ALPAO deformable mirror (DM) and a 15x15 Shack-Hartmann wavefront sensor (SH-WFS). In this bench, the turbulence is simulated using a rotating phase plate in a pupil plane. In general, such components are designed using a randomly generated phase screen. Such single realisation does not necessarily provide the wanted structure function. We present a solution to design the printed pattern to ensure that the beam sees a strict and controlled Kolmogorov statistics with the correct 2D structure function. This is essential to control the experimental conditions in order to compare the bench results with the numerical simulations and predictions. This bench is further used to deeply characterise the full 27 mm pupil of the ALPAO DM using a 54x54 ALPAO SH-WFS. We measure the average shape of its influence functions as well as the influence function of each single actuator to study their dispersion. We study the linearity of the actuator amplitude with the command as well as the linearity of the influence function profile. We also study the actuator offsets as well as the membrane shape at 0-command. This knowledge is critical to get a forward model of the DM for the XAO control loop.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.