This paper presents an architecture for the estimation of dynamic state, geometric shape, and inertial parameters of objects in orbit, using on-orbit cooperative 3-D vision sensors. This has application in many current and projected space missions, such as satellite capture and servicing, debris capture and mitigation, and large space structure assembly and maintenance. The method presented here consists of three distinct parts: (1) kinematic data fusion, which condenses sensory data into a coarse estimate of target pose; (2) Kalman filtering, which filters these coarse estimates and extracts the full dynamic state and inertial parameters of the target; and (3) shape estimation, which uses filtered pose information and the raw sensory data to build a probabilistic map of the target’s shape. This method does not rely on feature detection, optical flow, or model matching, and therefore is robust to the harsh sensing conditions of space. Instead, it exploits the well-modeled dynamics of objects in space through the Kalman filter. The architecture is computationally fast since only coarse measurements need to be provided to the Kalman filter. This paper will summarize the three steps of the architecture. Simulation results will follow showing the theoretical performance of the architecture.
This paper reports on the development of a lightweight hyper-redundant manipulator driven by embedded dielectric polymer actuators. This manipulator uses binary actuation and belongs to a class of digital mechanisms that are able to perform precise discrete motions without the need for sensing and feedback control. The system is built from an assembly of modular parallel stages and has potential to be miniaturized for applications ranging from biomedical devices to space system components. The polymer actuators can make such devices feasible. This paper presents the design of a modular polymer actuator that can work under both tension and compression. The actuators achieve improved performance by incorporating an elastic passive element to maintain uniform force-displacement characteristic and bi-stable action. A flexible frame also insures nearly optimal pre-strain required by dielectric film based actuators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.