KEYWORDS: Skin, Digital image correlation, Vibrometry, Finite element methods, Tissues, Skin cancer, Shape analysis, 3D modeling, MATLAB, In vivo imaging
Several noninvasive imaging techniques have been developed to monitor the health of skin and enhance the diagnosis of skin diseases. Among them, skin elastography is a popular technique used to measure the elasticity of the skin. A change in the elasticity of the skin can influence its natural frequencies and mode shapes. We propose a technique to use the resonant frequencies and mode shapes of the skin to monitor its health. Our study demonstrates how the resonant frequencies and mode shapes of skin can be obtained using numerical and experimental analysis. In our study, natural frequencies and mode shapes are obtained via two methods: (1) finite element analysis: an eigensolution is performed on a finite element model of normal skin, including stratum corneum, epidermis, dermis, and subcutaneous layers and (2) digital image correlation (DIC): several in-vivo measurements have been performed using DIC. The experimental results show a correlation between the DIC and FE results suggesting a noninvasive method to obtain vibration properties of the skin. This method can be further examined to be eventually used as a method to differentiate healthy skin from diseased skin. Prevention, early diagnosis, and treatment are critical in helping to reduce the incidence, morbidity, and mortality associated with skin cancer; thus, making the current study significant and important in the field of skin biomechanics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.