Optical confinement can induce enhancement of the resonance energy transfer between fluorescent molecules by influencing the interaction between the different available energy levels. We study the energy transfer between a pair of molecules, tris(2-phenylpyridine) iridium and bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum, which are extensively used in organic light-emitting diode technologies. These molecules have previously shown Förster energy transfer. We present the result of the dipolar coupling of these two molecules embedded in a poly(N-vinylcarbazole) film and inserted in a colloidal photonic crystal. Due to the presence of the photonic band gap, the efficiency of the energy transfer has been improved. A thermal study of the emission under the effect of the photonic band gap has been performed.
Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a
system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and
investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by
an electric field respectively. Our investigations extend applications of photonic crystals into the field of
electroluminescence and LED technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.