This paper presents the evaluation of an alternative solution for detectors of dual energy x-ray absorptiometry systems. Bone mineral density (BMD) evaluation tools are crucial to the proper diagnosis of osteoporosis. The commercially available DEXA systems utilize CZT as the detector of the small dose of ionizing radiation passing through the area of interest. Our paper presents a novel Strontium Iodide doped with Europium (SrI2:Eu2+) scintillator crystal coupled to a Silicon Photomultiplier (SiPM) array as a less expensive alternative to CZT detector. Dual energy (60 keV and 122 keV) exposure was used for BMD measurements of a bone phantoms containing CaHPO4 to mimic bone and resin to mimic soft tissue. Calibration curves was determined for both BMD and for thickness measurements, validated by “unknown” phantoms. Both calibration curves lead to decreased errors compared to commercially available systems.
We present a preliminary design for a novel neutron detection system that is compact, lightweight, and low power consuming, utilizing the CubeSat platform making it suitable for space-based applications. This is made possible using the scintillating crystal lithium indium diselenide (6LiInSe2), the first crystal to include 6Li in the crystalline structure, and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha, gamma and neutron radiation. A principal aim of this work is to demonstrate the feasibility of such a neutron detection system within a CubeSat platform. The entire end-to-end system presented here is 10 cm x 10 cm x 15 cm, weighs 670 grams and requires 5 V direct current at 3 Watts.
We present a preliminary design for a neutron detection system that is compact, lightweight, and low power consuming, utilizing the CubeSat platform making it suitable for space-based applications. This is made possible using the scintillating crystal lithium indium diselenide (LiInSe26), the first crystal to include Li6 in the crystalline structure, and a silicon avalanche photodiode. The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. A principal aim of this work is to demonstrate the feasibility of such a neutron detection system within a CubeSat platform. The entire end-to-end system presented here is 10×10×15 cm3, weighs 670 g, and requires 5 V direct current at 3 W.
The detection of thermal neutrons has traditionally been accomplished with 3He-tubes, but with the recent shortage of 3He, much research has gone into finding suitable replacements. Both relatively inefficient 10B- and 6LiF-coated silicon diodes and HgI2 have been known for many years, and engineered structures in Si that have been filled with 10B and 6LiF have shown promise. These devices are intended to realize an optimal juxtaposition of neutron-sensitive material and semiconductor and thereby simulate a semiconductor containing B or Li. Such material has been realized for the first time in the form of 6LiInSe2 in which collectable charge from the 6Li(n,t) reaction indicates a neutron event. In this paper we report neutron and gamma responses of 6LiInSe2, we show pulse height spectra from pure gamma sources and from a thermal neutron source, and we derive the μτ product from the position of spectral features as a function of bias voltage. In addition, we demonstrate the observation of the beta decay of 116mIn in samples exposed to thermal neutrons. This feature of the response serves as an additional confirmation of exposure to neutrons.
The change in bulk resistivity of CdZnTe (CZT) crystals was measured during infrared (IR) light between 950 and 1000 nm. The crystals are grown using one of the state-of-the-art methods either the traveling heating method or the modified Bridgman method. The change resistivity was evaluated using the steady-state current with and without light. Additionally, the change in current with both IR sources were correlated to the influence of secondary phases (SP) in each crystal using IR transmission microscopy to determine whether the number and size of the impurities has a drastic effect based on the current-voltage (IV) characteristics. SP at various depths within CZT are connected to the existence of variable depth, IR-excitable traps that lie within the bandgap. The release of these traps will significantly affect the overall current in the system. However, the current increase may not match the overall energy of the light utilized are more dependent on the size and quantity for each energy range.
Chalcopyrite crystals of 6LiInSe2 have recently been shown to respond to gamma and thermal neutron radiation. Thus far, large crystals have been prepared although the charge collection efficiency has not been sufficient for high energy resolution. In an effort to improve energy resolution needed for gamma spectroscopy as well as pulse shape discrimination for mixed gamma neutron fluxes, the precipitate concentration within the 6LiInSe2 crystal have been studied. The precipitate volume greatly affects the energy resolution in the pulse height spectrum. Further, the charge mobility varies greatly with holes being preferentially trapped by these precipitates or some other defect site within the crystal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.