Based on a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) with dispersive optical feedback provided by a linearly chirped fiber Bragg grating (LCFBG), we propose a scheme for simultaneously generating multi-channel chaotic signal with time delay signature (TDS) suppression. The experimental results show that under LCFBG feedback, 45 longitudinal modes within a 30-dB amplitude variation in the WRC-FPLD can be simultaneously driven into chaotic states. With the increase of feedback strength, the effective bandwidth of the generated chaotic signal gradually increases while the TDS value firstly decreases and then increases. For feedback strength from -35 dB to -15 dB, the generated chaotic signals by WRC-FPLD under LCFBG feedback possess lower TDS compared with those under mirror feedback or ring cavity feedback. Under an optimized feedback strength of -32.88 dB, the TDS value is about 0.01, which means the TDS is almost completely suppressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.