We overview recent advances in visible single- and double-clad fluoride fiber lasers pumped by blue GaN laser diodes. The spectroscopic properties of ZBLAN glasses doped with Pr3+, Ho3+ and Dy3+ ions are revised. Power scalable efficient continuous-wave visible fluoride fiber lasers emitting in the green, yellow, red and deep-red spectral ranges are presented. Pumped by a single-emitter 6-W 443-nm GaN laser diode, a continuous-wave red double-clad Pr:ZBLAN fiber laser delivered 1.51 W at 634.5 nm with a slope efficiency of 31.0%, a laser threshold of 0.63 W and a spatially single-mode output (M2 ~1.02). Employing a high-power fiber-coupled laser module, power scalability up to 4.61 W was achieved at the expense of a lower slope efficiency of 22.8% and an increased laser threshold of 1.74 W. Green Ho:ZBLAN (543 nm) and yellow Dy:ZBLAN (575 nm) fiber lasers with high-brightness core pumping at 450 nm are also reported delivering 100 mW-level output with slope efficiencies of 31.2% and 19.6%, respectively, operating on the fundamental mode. A numerical model to predict the visible laser performance is presented and guidelines for further engineering of visible fiber laser sources are given.
The mid-infrared spectral region is a great technical and scientific interest in numerous research field and applications. Among these studies, the generation of mid-infrared supercontinuum in fibers has attracted strong interest in the last decade, because of unique properties such as broad wavelength-coverage and brightness. In this work, a cascaded supercontinuum generated in a fluoride and a chalcogenide fiber spanning from 2 to 10 µm has been used for the detection of infrared signatures of organic compounds. Those results open a new way for remote sensing and spectroscopy in the mid-IR.
Compared to oxide based glasses, vitreous materials composed of chalcogen elements (S, Se, Te) show large transparency windows in the infrared. Indeed, chalcogenide fibers can be transparent from the visible up to 12-15 μm, depending on their compositions. The IR signatures of most molecules, including biomolecules, are located in this spectral domain, which allows in situ, non-invasive and real-time detection of gaz or organics molecules. Indeed, chalcogenide glasses can present a high non-linear coefficient (n2), 100 to 1000 times larger than for silica glass, depending on the composition. An original way to obtain fibers is to design microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. Various chalcogenide MOFs operating in the mid-IR range have been elaborated in order to associate the high nonlinear properties of these glasses and the original MOF properties. Different glass compositions and different designs have been achieved depending on the intended application. Indeed, chalcogenide MOFs might lead to new devices with unique optical properties in the Mid-IR domain like multimode or endlessly single mode transmission of light, small or large mode area fibers, non-linear properties for wavelength conversion or generation of supercontinuum sources. In this work, a supercontinuum from 2 to 10 μm, with an average power of 15mW, has been obtained in a chalcogenide MOF by pumping with a supercontinuum generated in a fluoride fiber.
We report on a 3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gainswitched laser seeding an InF3 fiber. This innovative fiber presents a specific design that increases non-linear effects and shows very weak background losses. Thanks to the versatility of our gain-switched laser, all the pulse parameters have been widely optimized to generate a supercontinuum emission with the highest average power and the largest spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.