KEYWORDS: Lymphatic system, Near infrared, Optical imaging, Luminescence, Tumors, In vivo imaging, Breast cancer, Nuclear imaging, Molecular imaging, Cancer
Current techniques to assess lymph node metastases in cancer patients include lymphoscintigraphy after administration of a nonspecific radiocolloid in order to locate and resect lymph nodes for pathological examination of harbored cancer cells. Clinical trials involving intradermal or subcutaneous injection of antibody-based nuclear imaging agents have demonstrated the feasibility for target-specific, molecular imaging of cancer-positive lymph nodes. The basis for employing near-infrared (NIR) optical imaging for assessing disease is evidenced by recent work showing functional lymph imaging in mice, swine, and humans. We review antibody-based immunolymphoscintigraphy with an emphasis on the use of trastuzumab (or Herceptin) to target human epidermal growth factor receptor-2 (HER2) overexpressed in some breast cancers. Specifically, we review in vitro and preclinical imaging data from our laboratory that show how the dual-labeled agent (111In-DTPA)n-trastuzumab-(IRDye800)m utilizes the high photon count provided by an NIR fluorescent dye, IRDye 800CW, and the radioactive signal from a gamma emitter, Indium-111, for possible detection of HER2 metastasis in lymph nodes. We show that the accumulation and clearance of (111In-DTPA)n-trastuzumab-(IRDye800)m from the axillary nodes of mice occurs 48 h after intradermal injection into the dorsal aspect of the foot. The requirement for long clearance times from normal, cancer-negative nodes presents challenges for nuclear imaging agents with limited half-lives but does not hamper NIR optical imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.