The whispering gallery modes (WGM) micro resonators are based on elliptical objects, which can be made from optically transparent materials, The geometry of the object enables optical wave circulating inside the ellipse using total internal reflection. If there is a monochromatic light source with constant intensity to the ellipse, constructive interference may be observed. Poly methyl methacrylate acrylic (PMMA) WGM micro resonators are commercially available with typical optical quality factor of 103-104. These could limit problems with WGM micro resonator expensive manufacturing. Thanks to advances in high resolution image processing, read-outs using spectroscopy (single photo detector) could be replaced with image processing. Image processing (4.5μm/px) allows to split elliptical WGM micro resonator in regions and analyze separate sectors of the ellipse, which can used as a representation of surface irregularity interaction with higher order special mode groups. In the present work new type of image processing for micro-resonators were developed, to analyze intensity distribution in separate regions for the PMMA WGM micro-resonators (40-70 μm). Resonators were coupled using a tapered fiber and fixed wavelength VCSEL laser (760nm). Temperature was change from 20-80 0C which affected the PMMA refractive index (α), for 760nm dn/dT = -1.32 10-4 (0C-1) and thermal expansion (β) dR/dT = 2.60 10-4(0C-1). Combining the following physical changes, total changes (α+ β), WGM PMMA micro-resonator mode mapping was obtained. The following work offers new type of intensity processing methods for measuring applications using PMMA WGM micro resonators.
Whispering gallery mode resonators (WGMRs) are small axial symmetrical structures from transparent material, that can exceptionally well confine light within, thus making them ideal for studying light-matter interactions and using them as sensors. Various WGMR designs can be simulated using COMSOL Multiphysics. Sometimes an extra layer is coated on the surface of the resonator for achieving desirable effects. The extra layer changes quality factor of the resonator and ads extra modes for some frequencies. Different methods and studies are used for the exploration of this topic such as changing the thickness of the coating and using random functions to describe the roughness of the surface, which in micro and nanoscale makes a difference.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.