The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
The FOXSI-4 sounding rocket will fly a significantly upgraded instrument in NASA's first solar are campaign. It will deploy direct X-ray focusing optics which have revolutionized our understanding of astrophysical phenomena. For example, they have allowed NuSTAR to provide X-ray imaging and IXPE (scheduled for launch in 2021) to provide X-ray polarization observations with detectors with higher photon rate capability and greater sensitivity than their predecessors. The FOXSI sounding rocket is the first solar dedicated mission using this method and has demonstrated high sensitivity and improved imaging dynamic range with its three successful flights. Although the building blocks are already in place for a FOXSI satellite instrument, further advances are needed to equip the next generation of solar X-ray explorers. FOXSI-4 will develop and implement higher angular resolution optics/detector pairs to investigate fine spatial structures (both bright and faint) in a solar are. FOXSI-4 will use highly polished electroformed Wolter-I mirrors fabricated at the NASA/Marshall Space Flight Center (MSFC), together with finely pixelated Si CMOS sensors and fine-pitch CdTe strip detectors provided by a collaboration with institutes in Japan. FOXSI-4 will also implement a set of novel perforated attenuators that will enable both the low and high energy spectral components to be observed simultaneously in each pixel, even at the high rates expected from a medium (or large) size solar are. The campaign will take place during one of the Parker Solar Probe (PSP) perihelia, allowing coordination between this spacecraft and other instruments which observe the Sun at different wavelengths.
KEYWORDS: Stars, Exoplanets, Telescopes, Signal to noise ratio, Sun, Space operations, Planets, Optimization (mathematics), Large telescopes, Detection and tracking algorithms
We present optimized observation schedules for a distributed configuration of the Remote Occulter Mission. Accounting for refueling rounds, we show that an Earth-orbiting Remote Occulter could enable up to 158 ground-based observations of 80 exoplanetary targets in a mission lifetime. We develop two target lists, provide exposure time estimates for each potential target star, present an analytic approach for determining target observability, and estimate the cost of station-keeping and retargeting maneuvers required to maintain such a mission. We optimize the mission observation schedule over these cost and science delivery estimates using deterministic and metaheuristic optimization methods with varying degrees of operator intervention and conclude by assessing mission profile sensitivity to both isolated and accumulated cost and design perturbations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.