We report on first principles calculations of the tunneling current across n-alkanedithiol molecules (n = 4,6,8,10,12) sandwiched between two Au {111} electrodes. The conductance drops exponentially with increased chain length with decay parameter βn = 0.9. The results are compared with scanning tunneling microscopy measurements on decanedithiol and with other n-alkanedithiol (n = 6,8,10) results in the literature. The theoretical results are found to be an order of magnitude larger than experimental values but follow the same trend. However, two additional, more realistic, geometries are modeled by changing the bond type and by combining the first-principles results with a Wentzel-Kramer-Brillouin (WKB) expression for tunneling across the air gap that is invariably present during scanning tunneling microscopy (STM) measurements. These results are more compatible with the experimental data.
The possible role of self-assembled monolayers (SAMs) as the dielectric component of nanoscale capacitors is considered. SAMs of two rather different molecules, α,α’-p-xylyldithiol ('XYL’) and dodecanedithiol ('C12’) were produced on a gold {111} substrate, and characterized with respect to their conductivity. The data were fitted with a double tunnel barrier model, in which the two SAMs are primarily differentiated by barrier height and thickness with that of XYL having a thickness of 1.0 nm and a barrier height of 0.78 eV compared to 1.69 nm and 1.39 eV for C12. The remaining parameters of the model were determined by Monte Carlo optimization. Assuming perfect connection of top and bottom electrodes, the leakage current through the XYL at 1 volt is calculated to be 1.4x105 A/cm2, compared to 2.7x104 A/cm2 through C12. These values are not as low as can be obtained with SiO2 of the same thickness. However, SAMs are readily and precisely produced by simple, low temperature processes, a factor which may allow them a niche in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.