Here, we emphasize the importance of a bottom reflector for achieving unidirectional far-field emission. As a
result, over 80% of photons generated inside the cavity can be collected within a divergence angle of ±30° from
the top. We also discuss interesting analogy in which the nanocavity-bottom reflector coupled system is treated
as a point-like emitter in front of a mirror. Based on such a view point, the observed directivity is explained
by using a comprehensive interference model. Finally, we propose a very practical form of an efficient photonic
crystal nanolaser bonded on a flat metal surface, which may enable current injection and room-temperature
continuous-wave operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.