Necrosis is a form of cell death caused by an external factor of the cell, such as hypoxia. It is usually associated with rapidly growing malignancies in the breast, colon, brain, lungs, kidney, and pancreas. Multiphoton microscopy (MPM) based on intrinsic nonlinear optical signals were used to monitor the morphological changes of biological tissues and identify tumor tissue necrosis in breast cancer patients, as well as surrounding tumor cells and collagen. In this study, we performed MPM imaging of the breast tissue and found that there were two types of necrosis in the breast tissue, namely intraluminal necrosis and interstitial necrosis. Different types of necrosis may have different effects on the prognosis. It means MPM may provide a new assistant tool for pathologists to quickly and effectively identify tumor necrosis. It is expected that rapid identification of tumor necrotic areas can provide prognostic information for early recurrence or death, thus helping to diagnose and treat cancer.
Breast tumor microenvironment is composed of tumor cells, tumor-related cells, blood vessels and a series of extracellular matrix fibers. Tumor-infiltrating lymphocytes (Tils) in the microenvironment can directly or indirectly influence other components in the microenvironment, thus promoting the occurrence and development of tumors. Multiphoton microscopy (MPM) is based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). And it does not require the use of exogenous probes or staining of tissue. In this study, large-size images with subcellular resolution of the breast tumor tissue was performed using MPM. The results showed that the MPM could clearly distinguish intraepithelial Tils (iTils) and stromal compartments Tils (sTils) by comparing the signal strength and morphological difference. It demonstrated that MPM could be used as a means of pathological diagnosis and in clinical application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.