While quantitative analysis of dynamic biological cell motions in vivo is of great biomedical interest, acquiring 3-D (plus time) information is difficult due to the lack of imaging tools with sufficient spatial and temporal resolution. A novel 3-D high-speed microscopic imaging system is developed to enable 3-D time series data acquisition, based on a defocusing technique (DDPIV). Depth coordinate Z is resolved by the triangular image patterns generated by a mask with three apertures forming an equilateral triangle. Application of this technique to microscale imaging is validated by calibration of targets spread over the image field. 1-µm fluorescent tracer particles are injected into the blood stream of 32 h post-fertilization developing zebrafish embryos to help describe cardiac cell motions. 3-D and velocity fields of cardiovascular blood flow and trajectories of heart-wall motions are obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.