KEYWORDS: Control systems, Observatories, Systems engineering, Interfaces, Telescopes, Monte Carlo methods, Solar telescopes, Standards development, Optical instrument design, Safety
The Advanced Technology Solar Telescope (ATST) has recently received National Science Foundation (NSF) approval
to begin the construction process. ATST will be the most powerful solar telescope and the world's leading resource for
studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output.
This paper gives an overview of the project, and describes the project management principles and practices that have
been developed to optimize both the project's success as well as meeting requirements of the project's funding agency.
The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading
ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and
variability in the Sun's output. The project has successfully passed its final design review and the Environmental Impact
Study for construction of ATST on Haleakala, Maui, HI has been concluded in December of 2009. The project is now
entering its construction phase. As its highest priority science driver ATST shall provide high resolution and high
sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at
infrared wavelengths. With its 4 m aperture, ATST will resolve features at 0."03 at visible wavelengths and obtain 0."1
resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a
corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the coudé laboratory facility.
The initial set of first generation instruments consists of five facility class instruments, including imagers and spectropolarimeters.
The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic
fields place strong constraints on the polarization analysis and calibration. Development and construction of a fourmeter
solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure
and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST
will be given, followed by a summary of the design status of the telescope and its instrumentation, including design
status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront
correction
KEYWORDS: Telescopes, Control systems, Wavefronts, Adaptive optics, Observatories, Mirrors, Buildings, Control systems design, Solar telescopes, Optical instrument design
The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the
world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and
variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g.,
thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g.,
system design reviews, PDR, Haleakalä site environmental impact statement progress) and summarize the design of the
major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and
instrumentation.
KEYWORDS: Thermal modeling, Telescopes, Systems modeling, Convection, Solar radiation models, Solar telescopes, Cooling systems, Control systems, Camera shutters, Observatories
Telescope enclosure design is based on an increasingly standard set of criteria. Enclosures must provide failsafe protection in a harsh environment for an irreplaceable piece of equipment; must allow effective air flushing to minimize local seeing while still attenuating wind-induced vibration of the telescope; must reliably operate so that the dome is never the reason for observatory down time; must provide access to utilities, lifting devices and support facilities; and they must be affordable within the overall project budget. The enclosure for the Advanced Technology Solar Telescope (ATST) has to satisfy all these challenging requirements plus one more. To eliminate so-called external dome seeing, the exterior surfaces of the enclosure must be maintained at or just below ambient air temperature while being subjected to the full solar loading of an observing day. Further complicating the design of the ATST enclosure and support facilities are the environmental sensitivities and high construction costs at the selected site - the summit of Haleakala on the island of Maui, Hawaii. Previous development work has determined an appropriate enclosure shape to minimize solar exposure while allowing effective interior flushing, and has demonstrated the feasibility of controlling the exterior skin temperature with an active cooling system. This paper presents the evolution of the design since site selection and how the enclosure and associated thermal systems have been tailored to the particular climatic and terrain conditions of the site. Also discussed are load-reduction strategies that have been identified through thermal modeling, CFD modeling, and other analyses to refine and economize the thermal control systems.
KEYWORDS: Telescopes, Control systems, Mirrors, Wavefronts, Adaptive optics, Observatories, Control systems design, Buildings, Interfaces, Solar telescopes
The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g., thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g., system design reviews, instrument PDR, Haleakala site environmental impact statement progress) and summarize the design of the major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and instrumentation.
KEYWORDS: Telescopes, Space telescopes, Mirrors, Solar telescopes, Optical instrument design, Control systems, Finite element methods, Fourier transforms, Observatories, Off axis mirrors
When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab.
The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.
The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges, which include: thermal control of optics and telescope structure; contamination control of the primary mirror to achieve low scattered light levels for coronal observations; control of instrumental polarization to allow accurate and precise polarimetric observations of solar magnetic fields; and high-order solar adaptive optics that uses solar granulation as the wavefront sensing target in order to achieve diffraction limited imaging and spectroscopy. We give a status report of the ATST project focusing on the substantial progress that has been made with the design of the ATST. We summarize the design of the major subsystems, including the enclosure, the primary and secondary mirror assemblies, the coude and Nasmyth focal stations, adaptive optics and instrumentation. The site selection has been successfully concluded and we discuss areas where the site selection impacts the design.
KEYWORDS: Telescopes, Adaptive optics, Optical instrument design, Polarization, Solar telescopes, Polarimetry, Mirrors, Visible radiation, Space telescopes, Control systems design
The Advance Technology Solar Telescope (ATST) has finished its conceptual design stage, submitted a proposal for construction funding and is working towards a system level preliminary design review later this year. The current concept (including integrated adaptive optics and instrumentation) will be reviewed with concentration on solutions to the unique engineering challenges for a four meter solar telescope that have been previously presented. The overall status will be given with a concentration on near term milestones and impact on final completion targeted in 2012.
The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope in the world, providing a unique scientific tool to study the Sun and possibly other astronomical objects, such as solar system planets. We briefly summarize the science drivers and observational requirements of ATST. The main focus of this paper is on the many technical challenges involved in designing a large aperture solar telescope. The ATST project has entered the design and development phase. Development of a 4-m solar telescope presents many technical challenges. Most existing high-resolution solar telescopes are designed as vacuum telescopes to avoid internal seeing caused by the solar heat load. The large aperture drives the ATST to an open-air design, similar to night-time telescope designs, and makes thermal control of optics and telescope structure a paramount consideration. A heat stop must reject most of the energy (13 kW) at prime focus without introducing internal seeing. To achieve diffraction-limited observations at visible and infrared wavelengths, ATST will have a high order (order 1000 DoF) adaptive optics system using solar granulation as the wavefront sensing target. Coronal observations require occulting in prime focus, a Lyot stop and contamination control of the primary. An initial set of instruments will be designed as integral part of the telescope. First telescope design and instrument concepts will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.