Directed Self-Assembly (DSA) is being extensively evaluated for application in semiconductor process integration.1-7 Since 2011, the number of publications on DSA at SPIE has exploded from roughly 26 to well over 80, indicating the groundswell of interest in the technology. Driving this interest are a number of attractive aspects of DSA including the ability to form both line/space and hole patterns at dimensions below 15 nm, the ability to achieve pitch multiplication to extend optical lithography, and the relatively low cost of the processes when compared with EUV or multiple patterning options.
Tokyo Electron Limited has focused its efforts in scaling many laboratory demonstrations to 300 mm wafers. Additionally, we have recognized that the use of DSA requires specific design considerations to create robust layouts. To this end, we have discussed the development of a DSA ecosystem that will make DSA a viable technology for our industry, and we have partnered with numerous companies to aid in the development of the ecosystem. This presentation will focus on our continuing role in developing the equipment required for DSA implementation specifically discussing defectivity reduction on flows for making line-space and hole patterns, etch transfer of DSA patterns into substrates of interest, and integration of DSA processes into larger patterning schemes.
Directed Self-Assembly (DSA) is one of the most promising technologies for scaling feature sizes to 16 nm and below.
Both line/space and hole patterns can be created with various block copolymer morphologies, and these materials allow
for molecular-level control of the feature shapes—exactly the characteristics that are required for creating high fidelity
lithographic patterns. Over the past five years, the industry has been addressing the technical challenges of maturing this
technology by addressing concerns such as pattern defectivity, materials specifications, design layout, and tool
requirements. Though the learning curve has been steep, DSA has made significant progress toward implementation
in high-volume manufacturing.
Tokyo Electron has been focused on the best methods of achieving high-fidelity patterns using DSA processing. Unlike
other technologies where optics and photons drive the formation of patterns, DSA relies on surface interactions and
polymer thermodynamics to determine the final pattern shapes. These phenomena, in turn, are controlled by the
processing that occurs on clean-tracks, etchers, and cleaning systems, and so a host of new technology has been
developed to facilitate DSA. In this paper we will discuss the processes and hardware that are emerging as critical
enablers for DSA implementation, and we will also demonstrate the kinds of high fidelity patterns typical of mainstream
DSA integrations.
Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL’s latest process solutions for both hole and line/space DSA process integrations are presented.
Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown
the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards line edge
roughness (LER) and pattern collapse improvement [1-4]. The current challenges for industry adoption are materials
maturity, practical process integration, hardware capability, defect reduction and design integration. Tokyo Electron
(TEL) has created close collaborations with customers, consortia and material suppliers to address these challenges with
the long term goal of robust manufacturability.
This paper provides a wide range of DSA demonstrations to accommodate different device applications. In
collaboration with IMEC, directed line/space patterns at 12.5 and 14 nm HP are demonstrated with PS-b-PMMA
(poly(styrene-b-methylmethacrylate)) using both chemo and grapho-epitaxy process flows. Pre-pattern exposure
latitudes of >25% (max) have been demonstrated with 4X directed self-assembly on 300 mm wafers for both the lift off
and etch guide chemo-epitaxy process flows. Within TEL's Technology Development Center (TDC), directed selfassembly
processes have been applied to holes for both CD shrink and variation reduction. Using a PS-b-PMMA hole
shrink process, negative tone developed pre-pattern holes are reduced to below 30 nm with critical dimension uniformity
(CDU) of 0.9 nm (3s) and contact edge roughness (CER) of 0.8 nm. To generate higher resolution beyond a PS-b-PMMA system, a high chi material is used to demonstrate 9 nm HP line/ space post-etch patterns. In this paper, TEL presents process solutions for both line/space and hole DSA process integrations.
Along with the trend of reducing the critical dimension in photolithography, exposure wavelength has been shortened from 248nm to 193nm. Resin structures of resist including their chemical characteristics have been altered from PHS to acrylate polymer. On the other hand, 2.38wt% TMAH developer solution is widely used, which was optimized at the time of 436nm resist process. However, since the resist backbone and chemical characteristics of 193nm resist are different from that of 436nm resist. So, TMAH concentration of 2.38wt% is not necessarily the best value for 193nm process and may even worsen the process latitude. Therefore, we have studied improvement of the process latitude such as CD uniformity, pattern defect, and dissolution mechanism of 193nm resist in developer solution, by applying Diluted Developer Solution (DDS) on 193nm resist process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.