We have synthesized high quality type-II CdTe/CdSe near infrared quantum dots using successive ion layer adsorption and reaction chemistry. Transmission electron microscopy reveals that CdTe/CdSe can be synthesized layer by layer yielding quantum dots of narrow size distribution. Excitation and photoluminescence spectra reveal discrete type-II transitions, which correspond to energy lower that type-I bandgap. We have used a peptide coating technique on type-II and commercial near infrared quantum dots for delivery in live animals and cultured cells.
We have developed a new functionalization approach for semiconductor nanocrystals based on a single-step exchange of surface ligands with custom-designed peptides. This peptide-coating technique yield small, monodisperse and very stable water-soluble NCs that remain bright and photostable. We have used this approach on several types of core and core-shell NCs in the visible and near-infrared spectrum range and used fluorescence correlation spectroscopy for rapid assessment of the colloidal and photophysical properties of the resulting particles. This peptide coating strategy has several advantages: it yields probes that are immediately biocompatible; it is amenable to improvements of the different properties (solubilization, functionalization, etc) via rational design, parallel synthesis, or molecular evolution; it permits the combination of several functions on individual NCs. These functionalized NCs have been used for diverse biomedical applications. Two are discussed here: single-particle tracking of membrane receptor in live cells and combined fluorescence and PET imaging of targeted delivery in live animals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.