Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22.
The association of GW170817 with GRB170817A proved that electromagnetic counterparts of gravitational wave events are the key to deeply understand the physics of NS-NS merges. Upgrades of the existing GW antennas and the construction of new ones will allow to increase sensitivity down to several hundred Mpc vastly increasing the number of possible electromagnetic counterparts. Monitoring of the hard X-ray/soft gamma-ray sky with good localisation capabilities will help to effectively tackle this problem allowing to fully exploit multi-messenger astronomy. However, building a high energy all-sky monitor with large collective area might be particularly challenging due to the need to place the detectors onboard satellites of limited size. Distributed astronomy is a simple and cheap solution to overcome this difficulty. Here we discuss in detail dedicated timing techniques that allow to precisely locate an astronomical event in the sky taking advantage of the spatial distribution of a swarm of detectors orbiting Earth.
HERMES-TP/SP is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their position. The projects are funded by the Italian Space Agency and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 821896. HERMES-TP/SP is an in orbit demonstration, that should be tested in orbit by the beginning of 2022. It is intrinsically a modular experiment that can be naturally expanded to provide a global, sensitive all sky monitor for high energy transients. On behalf of the HERMES-TP and HERMES-SP collaborations I will present the main scientific goals of HERMES-TP/SP, as well as a progress report on the payload, service module and ground segment developments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.