MICADO is the ELT first light instrument, an imager working at the diffraction limit of the telescope thanks to two adaptive optics (AO) modes: a single conjugate one (SCAO), available at the instrument first light and developed by the MICADO consortium, and a multi conjugate one (MCAO), developed by the MORFEO consortium. Although the project final design review process is about to be completed, the review board and ESO acknowledged that "the review of the final design can be considered complete for the majority of the MICADO sub-systems" and agreed that MICADO can start manufacturing. For the MICADO SCAO module, we have started the manufacturing of several parts: the majority of the SCAO optics and of the SCAO mechanics, the real-time computer software and the instrument control software. This manufacturing is ordered in several steps to allow the progressive integration of a first full AO close loop with the final SCAO parts. In this contribution, we will focus on the first two steps: on our AO Sésame bench and the so-called "β flat configuration". We will present the status of this manufacturing and the first results obtained.
Understanding the origin of the Martian moons is the main objective of the JAXA MMX (Martian Moons eXploration) mission, that will be launched in October 2026. Among the 13 instruments composing the payload, MIRS is an infrared imaging spectrometer that will map the mineralogy and search for organic compounds on the moons’ surfaces. MIRS will also study the Martian atmosphere, focusing on the spatial and temporal variations of water, dust and clouds. MIRS is operating in the 0.9-3.6 μm spectral range with a spectral resolution varying from 22 nm to 32 nm. The field of view covers 3.3° whereas the instantaneous field of view is 0.35 mrad. This presentation will detail the design and present the end-to-end performance obtained during the final instrument test in a representative thermal environment.
MICADO is a first light instrument for the Extremely Large Telescope (ELT), set to start operating later this decade. It will provide diffraction limited imaging, astrometry, high contrast imaging, and long slit spectroscopy at near-infrared wavelengths. During the initial phase operations, adaptive optics (AO) correction will be provided by its own natural guide star wavefront sensor. In its final configuration, that AO system will be retained and complemented by the laser guide star multi-conjugate adaptive optics module MORFEO (formerly known as MAORY). Among many other things, MICADO will study exoplanets, distant galaxies and stars, and investigate black holes, such as Sagittarius A* at the centre of the Milky Way. After their final design phase, most components of MICADO have moved on to the manufacturing and assembly phase. Here we summarize the final design of the instrument and provide an overview about its current manufacturing status and the timeline. Some lessons learned from the final design review process will be presented in order to help future instrumentation projects to cope with the challenges arising from the substantial differences between projects for 8-10m class telescopes (e.g. ESO’s VLT) and the next generation Extremely Large Telescopes (e.g. ESO’s ELT). Finally, MICADO's expected performance will be discussed in the context of the current landscape of astronomical observatories and instruments. For instance, MICADO will have similar sensitivity as the James Webb Space Telescope (JWST), but with six times the spatial resolution.
MICADO is the ELT first light instrument, an imager working at the diffraction limit of the telescope thanks to two adaptive optics (AO) modes: a single conjugate one (SCAO), available at the instrument first light and developed by the MICADO consortium, and a multi conjugate one (MCAO), developed by the MORFEO consortium.
This contribution presents an overview of the SCAO module while MICADO and its SCAO are in the last phase of their final design review. We focus on the SCAO architecture choices and present the final design of the SCAO subsystems: the Green Doughnut structure, the SCAO wavefront sensor, the SCAO calibration unit, the SCAO ICS (i.e. AOCS) and the SCAO RTC. We also present the SCAO global performance in terms of AO correction, obtained from an error budget that includes contributors estimated from AO end-to-end simulations as well as instrumental contributors. Finally, we present the current SCAO subsystems prototyping and the main milestones of the SCAO AIT plan.
This conference presentation was prepared for the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
MICADO will enable the ELT to perform diffraction limited near-infrared observations at first light. The instrument’s capabilities focus on imaging (including astrometric and high contrast) as well as single object spectroscopy. This contribution looks at how requirements from the observing modes have driven the instrument design and functionality. Using examples from specific science cases, and making use of the data simulation tool, an outline is presented of what we can expect the instrument to achieve.
MICADO is the European ELT first-light imager, working in the near-infrared at the telescope diffraction limit. Provided by MAORY, the ELT first-light adaptive optics module (AO), MCAO will be the primary AO mode of MICADO, driving the design of the instrument. MICADO will also come with a SCAO capability. Developed under MICADO’s responsibility and jointly by MICADO and MAORY, SCAO will be the first AO mode to be tested at the telescope, in a phased approach of the AO integration at the ELT. The MICADO-MAORY SCAO preliminary design review (PDR) will occur in November 2018. We present here different activities and results we have had in the past two years preparing this PDR, covering several fields (opto-mechanics, electronics, real-time and control software, integration and tests, AO simulations and performance, prototyping) and the different SCAO subsystems (pyramid wavefront sensor, calibration unit, real-time computer, dichroic and the so-called Green Doughnut which hosts the SCAO assembly as well as the MAORY MCAO natural guide star wavefront sensors).
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument’s observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focusing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.
MICADO is the E-ELT first-light imager, working at the diffraction limit in the near-infrared. Multi-conjugate adaptive optics (MCAO) will be the primary AO mode of MICADO, driving the design of the instrument. It will be provided by MAORY, the E-ELT first-light AO module. MICADO will also come with a SCAO capability, jointly developed by MICADO and MAORY. SCAO will be the first AO mode to be tested at the telescope, in a phased approach of AO integration at the E-ELT.
We present in the following the MICADO-MAORY SCAO specifications, the current SCAO prototyping activities at LESIA for E-ELT scale pyramid wavefront sensor (WFS) and real-time computer (RTC), our activities on end-to-end AO simulations and the current preliminary design of SCAO subsystems. We finish by presenting the implementation and current design studies for the high-contrast imaging mode of MICADO, which will make use of the SCAO correction offered to the instrument.
We present in this paper an overview of the single-conjugate adaptive optics (SCAO) module of the wide-field imager MICADO. MICADO is a near-IR camera for the European ELT, featuring a wide field (75"), spectroscopic and coronagraphic capabilities. It has been chosen by ESO as one of the two first-light instruments. MICADO will be optimized for the multi-conjugate adaptive optics module MAORY and will also work in SCAO mode. This SCAO mode will provide MICADO with a high-level, on-axis correction, making use of the M4 adaptive mirror in the telescope. We present first the current design of the different subsystems of the SCAO module (namely the optical relay interfacing MICADO to the telescope in its SCAO mode, the wavefront sensor, the real-time computer and the high contrast imaging). We then present the adaptive optics and coronagraphic simulations. The following section is devoted to the presentation of the project organization. We end with the conclusions and perspectives of the project.
FLUOR, which has been operational on CHARA since 2002, is an infrared fiber beam combiner. The telescope array will
soon be fitted with an adaptive optics system, which will enhance the interferometer performance. In this framework,
FLUOR has been entirely redeveloped and will be able to measure visibilities with higher accuracy and better sensitivity. The technical upgrades consist of improving some existing systems and developing new features. The bench, which is now remotely operable, primarily offers spectral dispersion (long fringes scanning), a more sensitive camera and a Fourier Transform Spectrometer mode. This paper presents the detailed opto-mechanical design of JouFLU (FLUOR rejuvenation), and the current instrument status.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The
instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the
astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument,
highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky
Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes
an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing
adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology
concept. Simulations show that 10 μas astrometry within few minutes is feasible for a source with a magnitude of
mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
MICADO is the adaptive optics imaging camera for the E-ELT. It has been designed and optimised to be mounted
to the LGS-MCAO system MAORY, and will provide diffraction limited imaging over a wide (~1 arcmin) field
of view. For initial operations, it can also be used with its own simpler AO module that provides on-axis
diffraction limited performance using natural guide stars. We discuss the instrument's key capabilities and
expected performance, and show how the science drivers have shaped its design. We outline the technical
concept, from the opto-mechanical design to operations and data processing. We describe the AO module,
summarise the instrument performance, and indicate some possible future developments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.