Fraunhofer IPMS has developed a one-dimensional high-speed spatial light modulator in cooperation with Micronic
Mydata AB. This SLM is the core element of the Swedish company’s new LDI 5sp series of Laser-Direct-Imaging
systems optimized for processing of advanced substrates for semiconductor packaging. This paper reports on design,
technology, characterization and application results of the new SLM. With a resolution of 8192 pixels that can be
modulated in the MHz range and the capability to generate intensity gray-levels instantly without time multiplexing, the
SLM is applicable also in many other fields, wherever modulation of ultraviolet light needs to be combined with high
throughput and high precision.
We report on fabrication of high quality opaline photonic crystals from large silica spheres, self-assembled in hydrophilic trenches of silicon wafers by using a drawing apparatus with a combination of stirring. The achievements here reported comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, a filling of the trenches up to the top, leading to a spatially uniform film thickness, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry, verified using optical measurements. The opal lattice was found to match the pattern precisely in width as well as depth, providing an important step towards applications of opals in integrated optics. The influence of substrate structure on crystallization is also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.