Femtosecond lasers have been widely used in laboratories for years and are now suitable for industrial applications and new military ones. Due to their very short pulse duration, they have the capability to generate intense electric fields and plasmas in targeted materials. We present here a novel scheme of missile counter-measure that is using such an intense laser source to disrupt the operation of IR guidance systems. Classical lasers for missile defense are based on thermal effects on the target whereas photons are used as the kill vehicle [1,2]. In femtosecond countermeasure, the average power is quite low, but the very intense field creates ionization effects than can damage sensitive optics and also plasma that can be used as active decoys against IR homing electronics. As the recent systems are compact and portable, an airport protection scheme is proposed to eliminate manpads threats in the vicinity of a civilian airport.
Within the PREUVE project, the GAP of CEA Saclay has developed an EUV source that should meet (alpha) -tool specifications by the end of this year. In particular, a laser-produced plasma source has been developed that uses a dense and confined xenon jet target. Our technical solution is based on a specific target injector design and the use of well adapted nozzle materials to avoid debris formation by plasma erosion. After injection, the xenon is recycled and highly purified to reach a low cost round- the-clock operation. This source provides both high conversion efficiency and low debris flux. These are necessary conditions for its industrial application in the future EUV microlithography. The conception of the so-called ELSA (EUV Lithography Source Apparatus) prototype allows in principal 2 years full operation on the French lithography test bench BEL (Banc d'essai pour la lithographie) that has been developed during PREUVE. In parallel, the EXULITE consortium that is coordinated by Alcatel Vacuum Technology France (AVTF) has started its activities in the frame of the European MEDEA+ initiative on EUV source development. In collaboration with Thales and the CEA, AVTF develops a prototype power source for EUV lithography production tools by the end of 2004. A low cost and modular high power laser system architecture has been chosen and is developed by Thales and the CEA to pump the laser plasma- produced EUV source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.