Chalcogenide fibers are known for their large transparency window and their high nonlinear optical properties. Indeed, they can be transparent from the visible region up to the mid-infrared (mid-IR) until 12 µm..For these reasons, chalcogenide glass fibers are well suited for generating mid-IR supercontinuum source. The management of dispersion profile is of fundamental importance for supercontinuum generation. In order to address this problem, we have developed for the first-time chalcogenide graded index fibers with a nanostructured core composed by two different glass compositions
For several years, chalcogenide glasses have been studied as good candidates for numerous applications in the midinfrared region. Indeed, these glasses are transparent from 1 to 20 μm (depending on the composition), a mid- IR windows well-suited for sensing molecules whose optical signatures are located in the 2-16 μm range. In addition, thanks to appropriate thermal properties, chalcogenide glasses can be drawn into fibers, including microstructured optical fibers. In this work, a new method based on 3D-printing process is investigated to produce hollow chalcogenide glass preforms, which are then drawn into hollow-core fibers. The transmission of the “printed” hollow-core fiber has been measured and compared to the initial glass. A significant, but still manageable, increase by a factor of 2.5 is observed. This works opens a promising way for the fabrication of chalcogenide MOFs, more particularly for the elaboration of hollow core fibers.
The elaboration of chalcogenide microstructured optical fibers (MOFs) permits to combine the mid infrared transmission of chalcogenide glasses up to 18 µm to the unique optical properties of MOFs thanks to the high degree of freedom in the design of their geometrical structure. In this context, we have shown that chalcogenide preforms can be obtained by an original additive manufacturing process We have also shown that these preforms can be drawn into chalcogenide optical fibers. Those early-stage results open a new way for the elaboration of chalcogenide MOFs with more elaborate designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.