Very few materials are able to absorb visible light without dissipating some of the resulting energy into phonon modes, and these excited modes have the capability to act back on the electronic excitation that is generated. By the same token, very few probes of photophysical processes in materials are able to directly probe the coexistence of both electronic and thermal departures from equilibrium or directly visualize the impact of the spatiotemporal interaction of electronic and thermal excitations. I will nevertheless, describe such a capability that leverages not only the ps time resolution associated with electronic to thermal energy transduction but that also provides direct spatial maps of localized photoinduced electronic and temperature profiles and their coupled evolution. I will how how this approach allows us to investigate thermoelectric effects in few-layer MoS_2 and that it can be more broadly applied to other emerging semiconductors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.