Yb-doped Photonic Crystal Fibers (PCFs) have triggered a significant power scaling into fiber-based lasers. However thermally-induced effects, like mode instability, can compromise the output beam quality. PCF design with improved Higher Order Mode (HOM) delocalization and effective thermal resilience can contain the problem. In particular, Fully- Aperiodic Large-Pitch Fibers (FA-LPFs) have shown interesting properties in terms of resilience to thermal effects. In this paper the performances of a Yb-doped FA-LPF amplifier are experimentally and numerically investigated. Modal properties and gain competition between Fundamental Mode (FM) and first HOM have been calculated, in presence of thermal effects. The main doped fiber characteristics have been derived by comparison between experimental and numerical results.
The power scaling of fiber lasers and amplifiers has triggered an extensive development of large-mode area fibers among which the most promising are the distributed mode filtering fibers and the large-pitch fibers. These structures enable for an effective higher-order modes delocalization and subsequently a singlemode emission. An interesting alternative consists in using the fully-aperiodic large-pitch fibers, into which the standard air-silica photonic crystal cladding is replaced by an aperiodic pattern made of solid low-index inclusions cladding. However, in such a structure, the core and the background cladding material surrounding it must have rigorously the same refractive index. Current synthesis processes and measurement techniques offer respectively a maximum resolution of 5×10-4 and 1×10-4 while the indexmatching must be as precise as 1×10-5 . Lately a gain material with a refractive index 1.5×10-4 higher than that of the background cladding material was fabricated, thus re-confining the first higher-order modes in the core. A numerical study is carried out on the benefit of bending such fully-aperiodic fiber to counteract this phenomenon. Optimized bending axis and radius have been determined. Experiments are done in a laser cavity operating at 1030 nm using an 88cm-long 51μm core diameter ytterbium-doped fiber. Results demonstrate an improvement of the M2 from 1.7 when the fiber is kept straight to 1.2 when it is bent with a 100 to 60 cm bend radius. These primary results are promising for future power scaling.
Over the last decade, significant work has been carried out in order to increase the energy/peak power provided by fiber lasers. Indeed, new microstructured fibers with large (or very large) mode area cores (LMA) such as Distributed Mode Filtering (DMF) fibers and Large-Pitch Fibers (LPF) have been developed to address this concern. These technologies have allowed diffraction-limited emission with core diameters higher than 80 μm, and have state-of-the-art performances in terms of pulse energy or peak power while keeping an excellent spatial beam quality. Although these fibers were designed to reach high power levels while maintaining a single transverse mode propagation, power scaling becomes quickly limited by the onset of transverse modal instabilities (TMI). This effect suddenly arises when a certain average power threshold is exceeded, drastically degrading the emitted beam quality. In this work, we investigate the influence of the core dimensions and the refractive index mismatch between the active core and the background cladding material, on the TMI power threshold in rod-type Fully-Aperiodic-LPF. This fiber structure was specifically designed to enhance the higher-order modes (HOMs) delocalization out of the gain region and thus push further the onset of modal instabilities. Using a 400W pump diode at 976 nm, the power scaling, as well as the spatial beam quality and its temporal behavior were investigated in laser configuration, which theoretically provides a lower TMI power threshold than the amplifier one due to the lack of selective excitation of the fundamental mode.
In this communication, the authors report on the first high peak-power emission obtained using a solid non-filamented core fully-aperiodic large pitch fiber manufactured by the REPUSIL method which is based on the sintering and vitrification of micrometric doped silica powders. Using a simple amplifier stage based on a 75 cm long piece of a fullyaperiodic large pitch fiber with a fiber core of 50 μm, an average output power of 95 W was achieved with an available pump power of 175 W, corresponding to an optical-to-optical efficiency of 54 %. The peak power reaches about 35 kW for pulse duration of 200 ps at a repetition rate of 13.5 MHz. A recent evolution of our set-up using a seeder delivering an average power of 4 W at 1 MHz with a pulse duration of 50 ps led to the emission of 71.4W in average power corresponding to a peak power of 1.42 MW. These results present the first demonstration of high average and high peak power in pulsed regime for these fibers.
Constant innovations of fiber technology over the last twenty years has fueled a huge improvement of the performances of fiber lasers. Further power scaling of fiber lasers is currently hindered by the phenomenon of transverse mode instabilities, a sudden deterioration of output beam quality occurring beyond a certain power threshold due to energy transfer from the fiber fundamental mode to high-order modes. Several studies have pinpointed a thermal origin for this phenomenon. A possible solution is to implement fiber designs capable of providing a robust single-mode operation even under severe heat load, in order to prevent such coupling. In this paper the effects on the propagating modes of the change of the inner cladding size and microstructuration in double-cladding photonic crystal fibers under heating condition are discussed, and related to field confinement and single-mode regime.
In this communication, the authors report on the first high power emission obtained using a solid non-filamented core fully-aperiodic large pitch fiber manufactured by the REPUSIL method which is based on the sintering and vitrification of micrometric doped silica powders. Using a simple laser cavity, an average output power of 252 W was achieved for the first time in such a fiber with an available pump power of 400 W, corresponding to an optical-to-optical efficiency of 63 %. The M2 measurements have shown an excellent beam quality with values close to 1.4 at full power and lower than 1.3 for signal power lower than 215 W.
In this paper, we investigate the potential of various large mode area fibers under thermal load, that is the state-of-the-art air-silica large pitch fibers, as well as the recently devised symmetry-reduced photonic crystal fiber and aperiodic all-solid by carefully considering the degrees of freedom offered all along the fiber fabrication. This work aims to discuss the mode filtering ability of these structures in regard to the power scaling and to confirm their potential for robust singlemode operation at high power level. Structural principles contributing to improve their performances such as the impact of air holes / solid inclusions size will be presented. We also intend to establish that the range of average absorbed/output power for which a robust singlemode operation is available can be shifted to fulfill user requests in term of power range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.