In pursuit of advancing large array receiver capabilities and enhancing the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT), we have successfully fabricated 230 GHz finline superconductor-insulator-superconductor (SIS) mixers. These mixers are critical for assessing the potential and prospective for the HARP instrument’s upgrade. Unlike the existing HARP’s mixer, we replace the probe antenna with an end-fire unilateral finline as the waveguide to planar circuit transition. This mixer design is expected to operate from about 160–260 GHz (approximately 47% bandwidth), and the mixer chips’ current-voltage (I-V) curves have been characterized, showing promising results with a quality factor (Rsg/Rn) exceeding 9.3. Evaluation of the double-sideband (DSB) receiver noise temperature (Trx) is currently underway. Once successfully characterised, our immediate aim is to scale the mixer to operate at HARP’s frequency range near 345 GHz to achieve similar broad RF bandwidth performance. Ongoing simulations are currently being conducted for the design of the 345 GHz finline mixer. This work marks a crucial step toward enhancing HARP receiver performance with better sensitivity and wider Intermediate Frequency (IF) bandwidth, enabling higher-frequency observations, and expanding the scientific potential of the JCMT and its collaborative partners.
We present the instrument integration and on-sky commissioning results for Kuntur, the LLAMA 690GHz receiver, on loan to the James Clerk Maxwell Telescope (JCMT). The LLAMA 690GHz receiver is a state-of-the-art sideband-separating (2SB), dual polarization receiver, built by the Netherlands Research School for Astronomy (NOVA) laboratory at Groningen, for the Large Latin American Millimeter Array (LLAMA), Argentina. In collaboration with LLAMA, the Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (ASIAA) and the Greenland Telescope (GLT), the receiver cartridge and WCA have come on loan to JCMT for on-sky commissioning and future VLBI observing tests. The results reveal the potential for single dish observing science at 690GHz with JCMT on Maunakea and provides a pointer to future 690GHz science for both the GLT and LLAMA.
SCUBA-2/POL-2 has been the most productive instrument at JCMT since it’s fully commissioned in 2011 September, and it’s constantly oversubscribed during the call-for-proposals by a factor of 3 to 5. The proposed new 850μm instrument will feature 7272 state-of-the-art Microwave Kinetic Inductance Detectors (MKIDs) operated below 100 mK, fully utilizing the JCMT’s 12 arcmin Field of View (FoV), thus have all the capabilities of SCUBA-2 at 850 μm, yet will map an order of magnitude faster. The new instrument will be incorporated with intrinsic polarization measurement capability which is 3636 pixels. Mapping the 850 μm polarization will be improved by a factor of at least 20.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.