Cavity solitons are localized light peaks in the transverse section of nonlinear resonators. These structures are usually formed under a coexistence condition between a homogeneous background of radiation and a self- organized patterns resulting from a Turing type of instabilities. In this issue, most of studies have been realized ignoring the nonlocal effects. Non-local effects can play an important role in the formation of cavity solitons in optics, population dynamics and plant ecology. Depending on the choice of the nonlocal interaction function, the nonlocal coupling can be strong or weak. When the nonlocal coupling is strong, the interaction between fronts is controlled by the whole non-local interaction function. Recently it has shown that this type of nonlocal coupling strongly affects the dynamics of fronts connecting two homogeneous steady states and leads to the stabilization of cavity solitons with a varying size plateau. Here, we consider a ring passive cavity filled with a Kerr medium like a liquid crystal or left-handed materials and driven by a coherent injected beam. We show that cavity solitons resulting for strong front interaction are stable in one and two-dimensional setting out of any type of Turing instability. Their spatial profile is characterized by a varying size plateau. Our results can apply to large class of spatially extended systems with strong nonlocal coupling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.