During the last decades, low temperature detectors have undergone a considerable growth and are now widely
acknowledged as useful instruments in many fundamental physics experiments. In this field, the phonon mediated
particle detectors known as bolometers are remarkable and are successfully used in various branches of physics
research for their good sensitivity, energy resolution and flexibility in the choice of the constituting materials.
Bolometers have proved to be powerful devices for radiation detection; in particular, they are able to detect
Gamma-rays with resolutions comparable to those obtained with the best Ge diodes. They are also suited for
applications in the area of nuclear and particle physics, like the study of rare events or dark matter. Although
an effective technique, the use of bolometers in the specific field of the search for neutrinoless double beta
decay is affected by the lack of spatial resolution. This results in the expected signal of this rare decay hidden
under an indistinguishable background due to possible surface radioactive contaminations in the materials facing
the detectors. An approach to this problem is to make bolometers surface sensitive by applying ultra-pure
crystalline foils on the main detector through direct thermal contact and by operating them as active shields.
In this contribution we present for the first time surface sensitivity achieved with large mass TeO2 bolometers
(~800 g) operated underground at ~10 mK, dedicated to the detection of neutrinoless double beta decay of
130Te. Our encouraging measurements suggest that this could be a viable method for the discrimination of
background events.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.