A mode matching telescope for an EPR squeezer was designed with confocal off-axis configuration. Coupling loss is calculated as 0.02%, and the fabrication is expected to be feasible based on sensitivity analysis and Monte-Carlo simulation.
We undertake to build a new cross dispersed infrared spectrograph, whose design is a heritage of IGRINS, will be deployed at Gemini Telescope as facility instrument (IGRINS II). The Sunpower Cryotel GT cryocooler may be replaced with the current GM cooler in the future. The only drawback of using a stirling cryocooler is vibration and this may have a significant influence to astronomical instrument by decreasing the signal to noise ratio. On this test the induced vibration in all three axes were measured simultaneously on the external cyrostats bottom and internal cold stage linked to coldhead by a flexible thermal strap. The cryocooler was integrated with a compliant mount of the neoprene rubber or spring. The test was carried out with both the tuned vibration absorber (TVA) damper and active vibration cancellation (AVC) unit, when the temperature of cold stage went down to 70 K.
The GMT-Consortium Large Earth Finder (G-CLEF) is one of the first instrument for the Giant Magellan Telescope (GMT). The G-CLEF is a fiber fed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. The G-CLEF Flexure Control Camera (FCC) is included as a part in the G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The five optical components constituting the FCC are aligned on a common optical bench. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimaging camera barrel, and a detector module. The collimator receives the beam reflected by the fiber mirror and consists of a triplet lens. The neutral density filters are located just after the collimator to make it possible a broad range star brightness as a target or a guide. The tent prism focus analyzer is positioned at a pupil produced by the collimator and is used to measure a focus offset. The reimaging camera barrel includes two pairs of doublet lenses to focus the beam onto the CCD focal plane. The detector module is composed of a linear translator and a field de-rotator. In this article, we present the optical and mechanical detailed designs of the G-CLEF FCC.
KEYWORDS: Mirrors, Telescopes, Actuators, Space telescopes, Off axis mirrors, Integrated modeling, Interfaces, Optical instrument design, Phase transfer function, Control systems
The Fast-Steering Secondary Mirror (FSM) of Giant Magellan Telescope (GMT) consists of seven 1.1m diameter segments with effective diameter of 3.2m. Each segment is held by three axial supports and a central lateral support with a vacuum system for pressure compensation. Both on-axis and off-axis mirror segments are optimized under various design considerations. Each FSM segment contains a tip-tilt capability for guiding to attenuate telescope wind shake and mount control jitter. The design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The design of the mirror cell assembly will be performed including sub-assembly parts consisting of axial supports, lateral support, breakaway mechanism, seismic restraints, and pressure seal. . In this paper, the mechanical results and optical performance results are addressed for the optimized FSM mirror and mirror cell assembly, the design considerations are addressed, and performance prediction results are discussed in detail with respect to the specifications
The Giant Magellan Telescope (GMT) will feature two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and consists of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fast guiding to attenuate telescope wind shake and mount control jitter. This tiptilt capability thus enhances performance of the telescope in the seeing limited observation mode. The tip-tilt motion of the mirror is produced by three piezo actuators. In this paper we present a simulation model of the tip-tilt system which focuses on the piezo-actuators. The model includes hysteresis effects in the piezo elements and the position feedback control loop.
The Fast-steering Secondary Mirror (FSM) of Giant Magellan Telescope (GMT) consists of seven 1.1 m diameter circular segments with an effective diameter of 3.2 m, which are conjugated 1:1 to the seven 8.4 m segments of the primary. Each FSM segment contains a tip-tilt capability for fast guiding to attenuate telescope wind shake and mount control jitter by adapting axial support actuators. Breakaway System (BAS) is installed for protecting FSM from seismic overload or other unknown shocks in the axial support. When an earthquake or other unknown shocks come in, the springs in the BAS should limit the force along the axial support axis not to damage the mirror. We tested a single BAS in the lab by changing the input force to the BAS in a resolution of 10 N and measuring the displacement of the system. In this paper, we present experimental results from changing the input force gradually. We will discuss the detailed characteristics of the BAS in this report.
The Giant Magellan Telescope (GMT) will be equipped with two Gregorian secondary mirrors: a fast-steering mirror (FSM) system for seeing-limited operations and an adaptive secondary mirror (ASM) for adaptive optics observing modes. The FSM has an effective diameter of 3.2 m and is comprised of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment has a tip-tilt capability for fast guiding to attenuate telescope wind shake and jitter. To verify the tip-tilt performance at various orientations, we performed tiptilt tests using a conceptual prototype of the FSM (FSMP) which was developed at KASI for R&D of key technologies for FSM. In this paper, we present configuration, methodology, results, and lessons from the FSMP test which will be considered in the development of FSM.
The Fast Steering Secondary Mirror (FSM) for the Giant Magellan Telescope (GMT) will have seven 1.05 m diameter circular segments and rapid tip-tilt capability to stabilize images under wind loading. In this paper, we report on the assembly, integration, and test (AIT) plan for this complex opto-mechanical system. Each fast-steering mirror segment has optical, mechanical, and electrical components that support tip-tilt capability for fine coalignment and fast guiding to attenuate wind shake and jitter. The components include polished and lightweighted mirror, lateral support, axial support assembly, seismic restraints, and mirror cell. All components will be assembled, integrated and tested to the required mechanical and optical tolerances following a concrete plan. Prior to assembly, fiducial references on all components and subassemblies will be located by three-dimensional coordinate measurement machines to assist with assembly and initial alignment. All electronics components are also installed at designed locations. We will integrate subassemblies within the required tolerances using precision tooling and jigs. Performance tests of both static and dynamic properties will be conducted in different orientations, including facing down, horizontal pointing, and intermediate angles using custom tools. In addition, the FSM must be capable of being easily and safely removed from the top-end assemble and recoated during maintenance. In this paper, we describe preliminary AIT plan including our test approach, equipment list, and test configuration for the FSM segments.
The Giant Magellan Telescope (GMT) will be equipped with two Gregorian secondary mirrors; a fast-steering secondary mirror (FSM) for seeing-limited operations and an adaptive secondary mirror (ASM) for adaptive optics observing modes. The FSM has an effective diameter of 3.2 m and is comprised of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary mirror. Each FSM segment has a tip-tilt capability for fast guiding to attenuate telescope wind shake and jitter. The FSM is mounted on a two-stage positioning system; a macro-cell that positions the entire FSM segments as an assembly and seven hexapod actuators that position and drive the individual FSM segments. In this paper, we present a technical overview of the FSM development status. More details in each area of development will be presented in other papers by the FSM team.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.