Glioma is one of the most refractory types of brain tumor. Accurate tumor boundary identification and complete resection of the tumor are essential for glioma removal during brain surgery. We present a method based on visible resonance Raman (VRR) spectroscopy to identify glioma margins and grades. A set of diagnostic spectral biomarkers features are presented based on tissue composition changes revealed by VRR. The Raman spectra include molecular vibrational fingerprints of carotenoids, tryptophan, amide I/II/III, proteins, and lipids. These basic
VRR images from twenty-five specimens including three healthy tissues, one normal control, and twenty-one glioma tissues of grades II, II-III and III-IV with histology examination were measured and investigated using WITec300R confocal micro Raman imaging system with laser excitation of 532nm.
Two-dimensional RR spectral mappings performed in 20μm x 20μm generated 400 images which integrated the intensity of the specific biochemical bonds as the third dimension. The three-dimension (3D) map demonstrated the spatial distributions of three selected sets of RR spectra of molecular biomarkers, and revealed significant differences in the spectra between normal and glioma tissues of different grades due to the composition changes in key molimageecules. These RR molecular spectral fingerprints have displayed: a clear enhancement of RR vibrational modes at 1129-1131cm-1 and 2934cm-1 which are supposed to be arising from lipoproteins; evident decreased RR vibrational modes at 1442cm-1 and 2854cm-1 which are from saturated fatty acids bonds in all-grades of glioma brain tissues compared with normal tissues; and the enhanced RR spectral modes of 1129 cm-1 and 2938cm-1 which suggest contribution from lactate. These findings may provide a novel proof for anaerobic glycolysis metabolic process in brain glioma cancer tissues that has been explained by Warburg effects.
View contact details