The present study evaluated the intrapulpal thermal changes that occurred during the treatment of the root surfaces with a laser system emitting Er,Cr:YSGG 2780- and 940-nm diode laser irradiation in an alternating sequence. Thirty single-rooted human teeth were collected. The teeth were divided into three groups (n=10 each) and irradiated with Er,Cr:YSGG alone or combined with a 940-nm diode laser. To investigate the intrapulpal temperature changes, specimens were embedded in a resin block with a set of thermocouples introduced at different positions within the root canals. The first group was irradiated with only Er,Cr:YSGG (25 mJ, 50 Hz, 50 μs pulse duration, water and air spray); the second group was irradiated with Er,Cr:YSGG (same setting) and a 940-nm diode (2 W, chopped mode with 20% duty cycle); the third group was irradiated with Er,Cr:YSGG (same setting) and a diode (2 W, chopped mode with 50% duty cycle). During all irradiations, thermal changes were recorded in real time with thermocouples. While group 3 showed thermal rises on average of 1.68±0.98°C in the pulp chamber, groups 1 and 2 showed average temperature rises of <0.5°C. The combined laser emission of 2780 and 940 nm is a promising way for root surface debridement without inducing intrapulpal thermal damage when using an appropriate water/air spray. All measured temperatures were considerably below the critical value of 5.6°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.