This paper reports the development of 2000×256 format SWIR HgCdTe/Si FPA with multiple-choice gain (i.e. multiple-choice charge handling capacity) for hyperspectral detection. The spectral resolution is about 8nm. To meet the demands of variable low flux detection within each spectral band in the short wave infrared range, low dark current, low noise, variable conversion gains and high SNR (Signal to Noise Ratio) of FPA are needed. In this paper, we fabricate 512×512 pixel 30μm pitch SWIR HgCdTe diode array on Si by using a novel stress-release construction of HgCdTe chip on Si. Moreover, we design low noise, variable conversion gain and large dynamic range read-out integrated circuit (ROIC) and hybridized the ROIC on the HgCdTe diode array on Si substrate. There are 8-choice gains which can be selected locally according to the incident flux to meet high SNR detection demand. By high-accuracy splicing 4 512×512 HgCdTe/Si FPA we get mosaic 2000×512 FPA, and characterizations have been carried out and reveal that the array dark current densities on an order of 10-10A/cm2, quantum efficiency exceeding 70%, and the operability of 99.5% at operating temperature of around 110K. The SNR of this FPA achieved 120 when illuminated under 5×104photons/pixel.
Reliability is an important index to ensure the application of infrared focal plane arrays (IRFPAs) in complex environment, and it becomes a major bottleneck problem of IRFPAs’ development. Because of the characteristics such as type, nature, quantity, location and distribution et al, bad pixel which contains initial bad pixel and used bad pixel has outstanding advantage for failure analysis and reliability evaluation of IRFPAs. In this paper, the structure of IRPFAs has been introduced in detail, and the damage mechanisms of used bad pixel also have been analyzed deeply. At the same time, the feasibility to study IRPFAs' damage stress, failure position, damage mechanism has been discussed all around. The research of bad pixel can be used to optimize the structure and process, meanwhile it also can improve the accuracy of bad pixel identification and replacements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.