Unravelling the mysteries of the complex neural network dynamics of the brain is of utmost importance to science as it might lead to a deeper understanding of perception, cognition and consciousness. Numerous techniques are being used for brain imaging including intracellular electrophysiology, calcium imaging and microelectrode arrays imaging. However, all these technologies are facing severe limitations in the spatio-temporal resolutions and are thus unable to resolve fast real-time single neuron activity over a larger area of the brain. I will discuss our recent efforts in developing a new technique for neuroscience that offer wide-field brain imaging with unprecedented spatio-temporal resolution. It is based on magnetic field sensing of the neuron activity using magneto-optically sensitive Nitrogen-Vacancy color centers in a diamond crystal combined with light microscopy.
We demonstrate a magnetometric technique based on nonlinear magneto-optical rotation using amplitude modulated
light. The magnetometers can be operated in either open-loop (typical nonlinear magneto-optical rotation with
amplitude-modulated light) or closed-loop (self-oscillating) modes. The latter mode is particularly well suited for
conditions where the magnetic field is changing by large amounts over a relatively short timescale.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.