The spatio-temporal and polarisation properties of intense light is important in wide-ranging topics at the forefront of intense light-matter interactions, including laser-driven particle acceleration. In the context of experiments to optimize transparency-enhanced ion acceleration in expanding ultrathin foils, we investigate the polarisation and temporal properties of intense light measured at the rear of the target. An effective change in the angle of linear polarisation of the light results from a superposition of coherent radiation, generated by a directly accelerated bipolar electron distribution, and the light transmitted due to the onset of relativistic self-induced transparency. Simulations show that the generated light has a high-order transverse electromagnetic mode structure in both the first and second laser harmonics that can evolve on intra-pulse time-scales. The mode structure and polarisation state vary with the interaction parameters, opening up the possibility of developing this approach to achieve dynamic control of structured light fields at ultrahigh intensities [1].
We also report on frequency-resolved optical gating measurements of the light which demonstrate a novel and simple approach to diagnose the time during the interaction at which the foil becomes transparent to the laser light. This is a key parameter for optimising ion acceleration in expanding ultrathin foils. Coherent transition radiation produced at the foil rear interferes with laser light transmitted through the foil producing spectral fringes. The fringe spacing enables the relative timing of the onset of transmission with respect to the transition radiation generation to be determined. This self-referencing approach to spectral interferometry provides a route to optically controlling and optimising ion acceleration from ultrathin foils undergoing transparency [2].
[1] M.J. Duff et al., Scientific Reports 10, 105 (2020)
[2] S.D.R. Williamson et al., Phys. Rev. Applied 14, 034018 (2020)
The maximum energy to which ions are accelerated in the interaction of a high power laser pulse with a thin foil target scales with the laser intensity, with a power-law that varies with the acceleration mechanism and laser pulse parameters. For fixed laser energy and pulse duration, maximizing the intensity by focusing to a smaller focal spot does not, however, necessarily result in higher-energy ions. For the case of relatively thick foil targets, it has been shown that self-generated magnetic fields and unfavourable changes to the temperature and divergence of the fast electron population injected into the target can result in lower-energy sheath-accelerated ions compared to that expected from intensity scaling laws.
We report results from an investigation of the influence of laser focusing on ion acceleration in the ultrathin target regime, for which high energy protons have been achieved by our group [1]. We compare the interaction physics resulting from the use of f/3 and f/1 focusing geometries. Although f/1 focusing (achieved using a focusing plasma optic) produces a smaller nominal laser focal spot size and thus higher nominal peak intensity, more efficient ion acceleration to higher energies is achieved with the f/3 geometry for the case of expanding ultrathin foils undergoing relativistic self-induced transparency. Particle-in-cell simulations reveal that self-focusing in the expanding plasma produces a near-diffraction-limited focal spot, resulting in up to an order of magnitude higher focused intensity in the f/3 case. We also report on the extent to which this intensity enhancement is expected in the case of the short-pulse, ultrahigh-intensity regime that will soon be accessible using multi-petawatt lasers. The study is published in reference [2].
[1] A. Higginson et al., Nature Communications 9, 724 (2018)
[2] T. P. Frazer et al., Phys. Rev. Research 2, 042015(R) (2020)
Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of ~10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.