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Chapter 9 
Birefringence in Optical Fibers: 
Applications 
 
 
9.1 Introduction 

As discussed in the previous chapter, the so-called single-mode fibers in fact 
support two modes simultaneously, which are orthogonally polarized. In an ideal 
circular-core fiber, these two modes will propagate with the same phase velocity; 
however, practical fibers are not perfectly circularly symmetric. As a result, the 
two modes propagate with slightly different phase and group velocities. 
Furthermore, environmental factors such as bend, twist, and anisotropic stress 
also produce birefringence in the fiber, the direction and magnitude of which 
keep changing with time due to changes in the ambient conditions such as 
temperature. These factors also couple energy from one mode to the other mode 
of the fiber, creating problems in practical applications.  

The first issue we discuss is that as the magnitude of the birefringence 
mentioned earlier keeps changing randomly with time due to fluctuations in the 
ambient conditions, the output SOP also keeps fluctuating with time. The change 
in the output SOP is of little consequence in applications where the detected light 
is not sensitive to the polarization state. However, in many applications such as 
fiber optic interferometric sensors, coupling between optical fibers and integrated 
optic devices, coherent communication systems, and so on, the output SOP must 
remain stable. Secondly, since each mode propagates with different group 
velocities, the so-called polarization mode dispersion (PMD) can limit the 
ultimate bandwidth of a single-mode optical communication system.  

We have already discussed the detrimental aspects of the random 
birefringence present in the practical fibers. However, a controlled and deliberate 
birefringence introduced in the fiber may be used to realize several in-line fiber 
optical components and devices. In this chapter, we will discuss this aspect, i.e., 
the applications of the controlled and deliberate birefringence introduced in the 
fiber. The detrimental aspect—namely, the PMD—will be discussed in the next 
chapter. 

One of the most important applications of the deliberately introduced 
birefringence in optical fibers is the development of high-birefringence (Hi-Bi) 
fibers, which are realized by introducing a permanent high birefringence into the 
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fiber during the fabrication stage itself. Such fibers can maintain the SOP of the 
incident light over large distances and hence are also known as polarization-
maintaining fibers (PMFs). In the next section, we will discuss different types of 
PMFs, their polarization characteristics, and their applications. Devices using 
controlled birefringence in conventional single-mode fibers are then discussed. 

9.2 Polarization-Maintaining Fibers 

Polarization-maintaining fibers can be broadly divided into the following two 
categories: (i) high-birefringence (Hi-Bi) fibers and (ii) single-polarization 
single-mode (SPSM) fibers. 

9.2.1 High-birefringence (Hi-Bi) fibers  

In the case of highly birefringent fibers, the propagation constants of the two 
orthogonally polarized modes are made quite different from each other so that the 
coupling between the two modes is greatly reduced. Thus, if the light is coupled 
to only one of the polarized modes, most of the light remains in the same 
polarized mode; hence, the SOP of the propagating light is maintained along the 
fiber. The polarization-holding capacity of a birefringent fiber is measured in 
terms of its beat length Lb, which is defined by 
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where βx and βy  and  represent the propagation constants of the two orthogonally 
polarized (for instance, along the x and y directions) modes, and effn  represents 

the difference between the effective indices seen by the x- and y-polarized modes 
at wavelength λ. A lower value of Lb means a higher value of βx – βy and hence 
corresponds to a fiber with high polarization-holding capacity. Physically, Lb  
represents the distance along the fiber in which the phase difference between the 
two fundamental modes becomes 2π. Thus, if light is coupled to both 
fundamental modes of such a fiber, the SOP will be repeated after each distance 
Lb along the fiber, as shown in Fig. 9.1. The typical values of Lb for Hi-Bi fibers 
lie between 1 and 2 mm.  

Cross talk (CT) is another important parameter of a Hi-Bi fiber that indicates 
its practical polarization-holding capacity. CT is a measure of the power coupled 
to the orthogonal polarization due to random coupling along the fiber when 
power is launched into one of the polarized modes at the input end. For example, 
if Px represents the power launched into the x-polarized mode at the input end 
and Py represents the power detected in the y-polarized mode at the output end, 
then the CT is defined as 
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Figure 9.1 Evolution of the polarization state of light guided along a birefringent fiber when 
the x- and y-polarized modes are equally excited. 
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The unit of CT is decibels (dB), and it has a negative value. A higher absolute 
value of CT represents better polarization-holding capacity of the fiber. 

Coupling between the two orthogonally polarized modes is also sometimes 
measured in terms of what is known as the mode-coupling parameter   of a Hi-
Bi fiber, which is defined as  
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L being the length of the fiber. The various types of popular Hi-Bi fibers are 
discussed in the remainder of Section 9.2.1. 

9.2.1.1 Elliptical-core fibers 

Elliptical-core fibers have an elliptical core embedded in a circular cladding, as 
shown in Fig. 9.2. The elliptical core of such fibers creates both geometrical 
anisotropy and asymmetrical stress in the core. As a result, the propagation 
constants  βx and βy of the two fundamental modes polarized along the major axis 
(x direction) and minor axis (y direction), respectively, become different. The 
total birefringence is thus the sum of the geometrical birefringence Bg (due to the 
noncircular shape of the core) and stress-induced birefringence Bs (due to the 
asymmetrical stress produced by the elliptical core). 
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Figure 9.2 Transverse cross section of an elliptical core fiber. 
 
9.2.1.1.1 Geometrical birefringence Bg 

The geometrical birefringence of such fibers depends on the aspect ratio a/b of 
the core as well as on the refractive index difference 1 2( )n n n    between the 

core and the cladding. In the vicinity of the first higher-mode cutoff, the 
birefringence for fibers with small core ellipticities (a/b < 1.2) is approximately 
given by1 
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Equation 9.4 shows that the birefringence of such fibers can be increased by 
increasing either the core ellipticity or n . However, it should be mentioned that 
neither a/b nor n  can be increased beyond a certain limit due to the following:  
 

(i) The birefringence is not a sensitive function of a/b for a/b  2; it saturates to 
a value that is approximately given by (as obtained by curve fitting from Fig. 1 of 
Ref. 2) 

 

 2
g 0.32( )B n . (9.5) 

 
(ii) For very large values of n , the core dimensions required for single-mode 
operation of the fiber become extremely small, and the fabrication of the fiber 
becomes very difficult. This is why such fibers were initially not considered of 
much use. However, the shift to longer wavelengths for long-distance 
communication systems has generated a great deal of interest in such fibers. 
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The exact calculation of Bg in elliptical-core fibers is quite difficult, as the 

wave equation must be solved in the elliptical coordinates, and the eigenvalue 
equation so obtained is in the form of an infinite determinant.3 Dyott et al.4 
obtained the birefringence of different elliptical-core fibers by truncating the 
infinite determinant to a finite order. Numerical techniques such as the finite- 
element method5 and the point-matching method6 have also been used by various 
authors; however, these approaches involve time-consuming numerical 
calculations. A number of approximate methods7–9 have also been reported, 
among which the one proposed by Kumar et al.9 is relatively simple and gives 
reasonably accurate values of Bg in the region of practical interest. This approach, 
which approximates the elliptical core by an equivalent rectangular core, is 
discussed in the following section.  
 
9.2.1.1.2 Equivalent rectangular waveguide model 

Kumar and coworkers9 have shown that the birefringence of an elliptical-core 
fiber closely matches that of a rectangular-core waveguide having the same core 
area, aspect ratio, and core and cladding refractive indices. Thus, the 
birefringence of an elliptical-core fiber with major and minor axes as 2a and 2b, 
respectively, is approximately equal to that of a rectangular-core waveguide with 
major and minor axes given by 
 

 2 πa a   and 2 πb b  , (9.6) 
 

with the same core and cladding refractive indices, n1 and n2, respectively. The 
propagation constants βx and βy for the two fundamental modes of this 
rectangular core waveguide can be obtained by using an accurate perturbation 
approach10 and are given by 
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where i stands for x or y, and 1i  and 2i  are obtained by solving the two 

following simple transcendental equations: 
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