Chapter 1
Introduction

The field of metamaterials arose as a combination of advances in fabrication
capabilities and developments in the physical understanding of how matter
interacts with electromagnetic waves. Metamaterial advances span the
electromagnetic spectrum, with examples being more common at lower
(e.g., microwave) frequencies. The microwave or x-band regime has proven to
be a good testbed for the first generation of metamaterials; however, recently,
we have seen optical-range metamaterials emerging as well. The discovery of
these more complex material-wave interactions has come about when nano-
fabrication techniques allow structures to be formed with dimensions much
smaller than the wavelength of (e.g., visible) light. We can now, in principle,
engineer material properties as we see fit, through arrangements of meta-
atomic structures, or small geometrically designed collections of atoms that
have very specific responses to incident radiation. Losses in these materials
will remain a major challenge, as we will see.

1.1 Historical Perspective

Most of the research in engineering and physics during the latter part of
the 20th century was performed by researchers who had no knowledge of
Victor Vesalago’s 1968 paper’ predicting some unusual material properties.
These properties included refraction on the same side of the normal for a
material that had a negative value for both its permittivity and its
permeability. It was not until Pendry’s 2000'! paper pointed out some
applications of this type of material that interest in making a material with
these characteristics took off. Pendry proposed that the normally exponen-
tially decaying components of a wave, namely, the evanescent components
(see Chapter 6), might be amplified by this type of material. This possibility
lead to the promise of a ‘perfect’ lens, or a lens that would have no theoretical
resolution limit, and this generated enormous enthusiasm to study these new
‘metamaterials.’
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How do we make a metamaterial? We first look at the descriptions of
simple bulk material properties and see how these can then be applied to
metamaterial constituents.

1.2 Basic Electromagnetic Properties of Materials

Originally, material interaction with electromagnetic waves was studied only
in the visible spectrum because of the human detector. Once the relationships
between the electromotive force and fields were settled, pioneers like Heinrich
Hertz quickly expanded their research into other frequency ranges. In the
wider realm of electromagnetic radiation, it became clear that both visible
light and these lower-frequency waves were all part of a continuum.
Traditionally, the index of refraction n has served as the simple measure by
which to evaluate the optical properties of a material in terms of how much
one can bend a light beam. To understand the index of refraction we must
have a basis from which to describe material interaction with light, namely,
Maxwell’s equations.

1.3 Maxwell’s Equations

We expect the reader to be somewhat familiar with Maxwell’s equations, thus
we do not fully derive them here as we are primarily concerned with their
consequences. We first follow the historical development and explanations of
Maxwell’s equations. Afterwards, we outline some of the requirements derived
from Maxwell’s equations. Finally, we consider their physical meaning and
then how these equations are modified in the presence of matter. The models for
the electromagnetic properties of matter are also reviewed as a foundation for
understanding wave interactions with atoms, real materials, and engineered
material comprising meta-atoms, i.e., metamaterials.

Although we might think that progress was slow, we should remind
ourselves that it was not until the ‘voltaic pile’ around 1800 that a consistent
source of current was available. Not long after, in 1820 while using this type of
battery, Hans Christian Oersted noticed that a nearby compass needle was
deflected by a parallel wire. Almost simultaneously, André-Marie Ampére
presented a detailed study of this phenomena that relates the closed path
integral of the magnetic field to the electric current density, which can be
formalized to a form similar to®

4% B-dl:pOJJ-ndS. (1.1)
C

This led to the obvious hypothesis that magnetism could, in some way, also
create an electric response. Accomplishing this proved more difficult, as
sources of magnetic current are limited, to say the least, even if there were
magnetic monopoles. Faraday was performing such an experiment when he
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recognized that by moving a magnet within a wire loop, he was able to create
a current. Thus, the changing magnetic flux was causing an induced electrical
current, which can be determined by the electromotive force,

aD,

Of course, these formalisms are missing a few key components, and Faraday
realized that there was a more complicated law of induction at work. The idea
of flux was carried further by Carl Friedrich Gauss to relate the electric flux
through a closed surface due to electric charge, q,,,:

(I)E _ Qenc , (1'3)
€0

which, as far as we know, can be extended to magnetism using the same
principle of superposition with the assumption that there are no magnetic
monopoles:

Py =0. (1.4)

It was a considerable feat to realize that the relationship among these
equations can be combined to formulate the fundamentals of electromag-
netics. Although we have to note that Maxwell initially started with over
20 equations to relate these, it was in fact Oliver Heaviside who reduced them
further to the four equations now known as Maxwell’s equations.*

1.4 Differential Form of Maxwell’s Equations

We now state the differential formulation of Maxwell’s equations, which we
intend to use for the remaining derivations within this text:

V - D(r,t) = p(r,1) (1.5a)

V- B(rs) = 0 (1.5b)

V x H(rf) = %D(r,t) +3,(00) (1.5¢)
V x E(r,t) = — L B(r0), (1.5d)
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We should also note that this requires the addition of two more equations to
formally complete fundamental derivations:”

D(r,t) = )E(r,7) + P(r,7) = €p€,E(r,t) = €E(r,?) (1.6)

B(l‘,[) = }LoH(l',l) + M(rﬂt) = ““Op‘rH(r’l) = MH(I‘,Z), (17)
where?
P(r,t) = electric polarization vector (coulombs/meter?)

M(r,?) = magnetic polarization vector (webers/meter?)

(amperes x seconds)
(volts x meters)

€ = permittivity

(amperes x seconds)
(volts x meters)

€, = permittivity of free space 8.8541878 x 10712

€, = relative permittivity dimensionless

(volts x seconds)
(amperes x meters)

i = permeability

(volts x seconds)
(amperes x meters)

wo = permeability of free space 1.25663706 x 10~¢

., = relative permeability dimensionless

The current formulation and understanding of these physical quantities
requires the duality of the wave and particle nature of light, although many of
the derivations are still based on classical approximations. It was Hendrik
Lorentz who removed the barrier in his 1892 theory of electrons by separating
mechanical qualities from those of light, thus effectively paving the way for
the sepgtration of electromagnetic radiation and its interaction with normal
matter.
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With the four equations (1.5) and a few additional constitutive relation-
ships, we describe the material properties that we will exploit in order to
develop the interesting properties associated with engineered materials and
metamaterials.

1.4.1 Polarization

Let us take a closer look at a few of Maxwell’s equations. For a given material
of volume V', we know that the total electric flux through its surface S is
proportional to the total charge within that volume. This can be stated as

J E-ds:ij odv, (1.8)
S V

€0

where s is the normal to the surface S, and dv simply represents the
incremental volume elements contained within the surface. We can use Gauss’
law for electrostatics [Eq. (1.5a)], with a simple substitution, V - E = p/eg,
which leads to

LE - ds = JVV - Edv. (1.9)

We can show that E is a conservative field, thus we can say that for an electric
potential ¢, E = —Ve. Once again, a simple substitution leads us to
—V2¢ = —p/e,. For dielectrics, which have bound charges that make the
predominant contributions to the material interaction with incident electro-
magnetic radiation, we can expand this out, leading us to a new term P, or the
polarization vector:

¢V -E=p—-V-P. (1.10)
A bit more insight may be found by rearranging as follows:
V- -E+V-P=p. (1.11)

We will assume for the moment that the polarization vector is linear, and we
can make one last change to get a better idea how the polarization vector will
affect the incident electromagnetic radiation:

V-[eE+P]=p

(1.12)
— EoE + P = D,
where D is known as the flux density or electric displacement vector. It is clear
now that, for a dielectric, the polarization vector is the only material property
that affects the incident wave. We will take a closer look at the polarization
vector and its nonlinear properties in Section 2.3.5.
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1.4.2 Conductivity

Denoted here by o,, conductivity is defined as a measure of the freedom of
electric charges to move in a given material. Conductivity specifically refers to
‘free electrons’ that travel across the bulk material versus the ‘bound charges’
that are associated with polarizability and are anchored locally by a restoring
force. The terms free and bound are questionable here as all materials can,
with high enough field strengths, be coerced into having conducting electrons.
Both types of charges will be discussed in detail later in Section 2.2. We can
see a consequence of the electric conductivity’s impact on an electromagnetic
interaction through Ampere’s law [Eq. (1.5¢)]:

V x H(r) = %D(r,z) + 3, (n0). (1.13)

In this case, J,(r,r) = 0, E.(1,7).

1.4.3 Dispersion

Dispersion is the frequency-dependent description of how materials interact
with electromagnetic radiation differently at different frequencies. We
consider linear dispersion models for typical dielectrics and metals, as this
approximates their behaviors quite well for most of the electromagnetic
spectrum. Dispersion can be expressed by several quantities that can be
compared versus frequency, to give a general appreciation for material
interaction in some bandwidth or frequency range. (Also referred to as
dispersion relations are the curves relating the magnitude of the wave vector
k =2mw/N, where \ is the wavelength, to the angular frequency o = 2muf,
with f equal to the frequency of oscillation.) It is convenient to look at
dispersion curves as a function of the real or imaginary parts of the index
R{n} = No/\, where )\ is the free-space or vacuum wavelength, or we can
look at dispersion curves as a function of the permittivity or permeability; at
higher frequencies the permeability is typically near unity, and we have
R{/e} ~ R{n} = \o/\ see Figs. 1.1 and 1.2.

A more in-depth discussion of linear and nonlinear dispersion can be
found in Section 2.2.1 or in Refs. 8 and 8.

1.4.4 Permittivity

The importance of permittivity to electromagnetic properties has been the
primary focus of optics for well over a century, since at optical frequencies one
typically assumes there to be little magnetic response. The term dielectric
constant was widely used synonymously to relative permittivity.'® We refer to
the former, the dielectric constant, as a zero-frequency parameter. Permittivity
is generally assumed to be the dominant, if not the only, contribution to the
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Figure 1.1 Broadband dispersion behavior of copper. In general, metals are described
well by simple dispersion models, as shown by the relative close agreement between
the Drude and the more complex Lorentz—Drude models here. Note that the large
scale (108) can obscure the fact that both models are trending to unity at optical
wavelengths.
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Figure 1.2 Near-resonance dispersion behavior of silver. A closer look illustrates the
complex nature of near-resonance dispersion, where the Lorentz—Drude model more
accurately depicts the real material. We will see that this complexity provides opportunities
for engineering material properties.
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index of refraction of a bulk material at optical frequencies, but part of the
allure of metamaterials is the ability to engineer structures that can exhibit a
magnetic response, even at optical frequencies. We will see later how this is
achieved in metamaterials. Given that €, is the permittivity of free space and
X. 1s the electrical susceptibility, we can define the permittivity through this
relationship while keeping in mind its frequency-dependent nature. We begin
by using Ampere’s law in differential form:

V x H(r,t) = %D(r,l) + J.(r,2). (1.5¢)

In order to make an association at a specific frequency or frequency ranges,
we will consider a steady state case. The general form for a harmonic field
with frequency given as o is'’

R{D(r)e "} = D(r,1). (1.14)

This follows for E(r,7), H(r,?), B(r,?), J.(r,7), p(r,f), ... as well. Using
Eq. (1.5¢) we can easily see that

9 —iot {
zn{[v « H(r) —5D(r)—J€(r)]e }_0. (1.15)
We can now substitute 2 D(r)e ™" = —iwDe " and
V x H(r) = —ioD(r) + J,(r). (1.16)

By definition, in a source-free region, the free current density J,(r) = o, E(r),
where o, is the electrical conductivity. We can also define D as

D(w) = E(0) + ex.E(w), (1.17)

with €, equal to the permittivity of free space, and where x, is what is called the
electric susceptibility. We can now fully define the permittivity through this
relationship:

(0) = lex + xe(0)] + 2 (118

e

€(w) = €yl + Xo(w)] + % = €€, (0). (1.19)

The complicated nature of €(w) can be seen from Eq. (1.19). We note that the
imaginary part of the electric susceptibility can incorporate contributions
due to the bulk conductivity of the material, if it is present. This makes for
some confusion as permittivity for metals, semiconductors, and dielectrics are
often treated from separate theoretical standpoints. We look at some of these
theoretical differences in Sections 2.2 and 2.3.
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1.4.5 Birefringence

Consider the constitutive relationship between D and E shown in Eq. (1.6),
where the permittivity is not isotropic. This relationship therefore can be
represented by a tensor €. We can write

€eE =D. (1.20)
For a harmonic time-dependent wave equation, Egs. (1.5a)—(1.5d) lead to
k x E = op,H
k x H= —oH. (12D
Then substituting
k xk x E = —w?u,D, (1.22)
which, using Eq. (1.21) gives
k x k x E = —w?u,EE. (1.23)

The solution to this equation is three linear equations giving the components
of E and can be represented in matrix form, i.e.,

I’l%ké —k% —k:% k1k2 k1k3 El 0
kzkl I’l%k(z) — k% — k% k2k3 Ez =0]{. (124)
k3k1 k3k2 I’l%ké — k% — k% E3 0

In a uniaxial crystal, n; = n, = ny and ny = n,, which simplifies the above
matrix to

k2 —I—k2 k2
(k* — k2n3) < ! pe T+ n—g - ké). (1.25)
e 0

The bracketed terms on the left represent free-space propagation, while on the
right we have the dispersion relation required to determine (k, k5, k3):
kI +k k3

+ Bk, (1.26)
2w

. . 1
or for nonmagnetic media, where ., = 1, and n = (€)2, we have

K4k K

Mt 5 k3. (1.27)
€ EH

This describes an ellipse or equifrequency surface, i.e., the allowed k values

in different spatial directions for a given frequency. In a biaxial crystal,

ny # ny # n.
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1.4.6 Permeability

As mentioned above, a material’s permeability is often ignored in optics
(i.e., at visible or ‘high’ frequencies). This is the case for materials having a
permeability near unity and materials that are governed solely by their
electrical response. Permeability plays an essential role in defining unique
metamaterial properties not readily available in nature.

Using Faraday’s law, with the addition of a magnetic current density
term, we have

V x B(r,f) = %B(r,t) +3,,(r0). (1.5d)

As we have stated previously in Eq. (1.14), we would like to move to the
frequency domain, which leads us to

R{B(r)e '} = B(r,7) (1.28)

for some frequency w. We are again led to the equation for the real part, this
time for Faraday’s law:

SR{ [V x E(r) — %B(r) - Jm(r)] e‘i“”} =0. (1.29)
The simple substitution of £B(r)e ™" = —iwBe ™’ leads to
V x E(r) = —i0wB(r) + J,,(r). (1.30)

By definition, in a source-free region, the free current J,,(r) = o,,H(r), where
o, 1s now the magnetic conductivity. We can also define B as

B(w) = poH(®) + pox,H(w). (1.31)

This completes the expression for the permeability as a function of ., which
equals the permeability of free space, and x,, which is the magnetic
susceptibility:

(@) = po[pe + X ()] + i(;m

(1.32)

A material’s magnetic response can be considered as originating from
circulating currents, large or small, which in turn depend on the effective
permittivity of the material, i.e., its bound and free charges, and their ability
to move. The general expressions of the permittivity and permeability for a
material or metamaterial are quite complex.
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1.4.7 Index of refraction

More common is the concept of a material’s index of refraction n. This quantity
is deceivingly simplified for most optical applications by being represented as a
real positive number greater than or equal to 1. We will see that removing this
simplification is a source for much of the surprising attributes of, and
concurrently much of the opportunities associated with, the field of engineered
materials, such as the properties illustrated in Table 1.1. Since 7 is dimensionless,
we can only define it based on a relational equation, which is normally done
through a comparison with the properties of electromagnetic waves in vacuum.
Although the index of refraction was originally defined through an electric field
interaction only, we must include the magnetic components of materials, as these
will play a larger role than typically assumed in most materials:

b (@), (0). (1.33)

We can plot material properties based on their values of the real parts of €
and w (see Fig. 1.3). The double-negative region was predicted by Veselago to
support propagating waves similar to the ‘normal dielectric’ quadrant.

n(o) =

1.4.8 A phenomenological description of refractive index

It is important to remember that only accelerating charges give rise to
radiation. Imagine a charge at rest and its electric field lines as shown in

Table 1.1 Changes in some simple relationships required after the introduction of the
magnetic properties of materials. We set { = \/% We also note here thatife < 0 and n <0,
then n < 0, which is discussed in Chapter 6.

Equation with no

Physical laws magnetic response Full equation

Snell sinf;  n, €, sin; € 1,
dnd, ~m Ve o= e

Doppler effect n e

Cerenkov effect n Ve

Fresnel equations
Fresnel equation at normal incidence

No reflections

) ny;cos0; —n, cos 6,

| =
1y cos 0y + n, cos 0,
ng—m
=
ny+n,
ny =np
1 polarization

.o {,cos0; — L cosby
L7 L cos8, + L cosB,
LG
L+

La==0

1 — (p&/mer)

N6, —
S 1- (Pvl/P«z)2

Brewster’s angle

N
tanfp = —
m

|| polarization

1 — (k&1 / &)

SineBH - 1- (61/62)2
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Figure 1.3 Permittivity and permeability domains. These domains explore the wide range
of properties not normally associated with natural materials and the new and large number of
possibilities that engineered materials offer, SNM is a single-negative-index material, and
DNM denotes a double-negative-index material.

Fig. 1.4. If the charge is suddenly accelerated, the field lines near the charge
are still radial, but at larger distances the information about the new position
of the charge is not known because of the finite speed of light. In the diagram,
we see that as the charge moves up, continuity of field lines dictate that there
must be a downward-pointing transverse component to the field radiating
away from the charge. This defines the source’s radiation pattern, which will
be at the same frequency as the external field.

In natural materials and metamaterials, charges are accelerated as a result
of the external propagating field. The radiated waves contribute to a new
field distribution governed by the nature of the induced currents, and these
re-radiated waves will interact with neighboring units. The refractive index is,
in some respects, a statement about the nature of the re-radiated light from
a collection of units possessing currents induced by the electromagnetic
wave. These might radiate as simple dipoles or more complex structures
(e.g., quadrupoles, multipoles, etc.).

Since the radiated field comes from a large collection of oscillating
charges (usually modeled only as dipoles) in a medium, why is refractive
index n usually >1 in naturally occurring materials? Assuming a plane wave
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Figure 1.4 Re-radiation of a single charged particle. A stationary charge with its electric
field lines is disturbed through an external field, which causes portions of its electric field
lines to be disturbed, and even at points, turn perpendicular to the initial field lines. The
relaxation time and subsequent re-radiation will control the material interaction with
electromagnetic radiation.

incident on many subwavelength-sized units, like atoms or meta-atoms, the
radiation drives a number of units into oscillation. The radiated field is
typically in phase with the incident field in naturally occurring materials.
(In a metamaterial it does not have to be!). If one calculates the field
at a point from a sheet of dipoles, one finds that the lateral displacement
between units usually leads to an effective 90-deg phase retardation with the
incident wave. This is illustrated in Fig. 1.4. At some observation point,
radiation from sources farther away arrive later, causing a phase delay.
Integrating over a large sheet of dipoles leads to a total phase delay of
exactly 90 deg compared to the incident wave. This corresponds to an
index >1, and the more units that contribute the larger the magnitude of that
index. Effective phase retardations or advances depend on the sources of the
radiated field.

If the charge motion has a resonance, then the phase shift of the radiated
field with respect to the incident field can vary from 0 to 180 deg. As we will
see in detail, these phase shifts occur through an absorption (or gain)
resonance as a function of frequency. For real materials, depending on the
frequency of light with respect to nearby resonances, we see an advance in the
phase or a delay. This is illustrated in Figs. 1.5 and 1.6. We interpret these
phase shifts either in terms of a slow down or speed up of the light (i.c., an
increasing or decreasing phase velocity).

In a meta-atom one can engineer very large resonances and ensure a high
degree of coherence between the resonant units, leading to much larger
effective index values compared to most conventional materials. One can also
use such effects to take the effective index back down through zero to negative
values.
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Figure 1.5 Position, velocity, and electric field field for n = 1. Continuity of field lines
dictates that there must be a downward-pointing transverse component to the field radiating
away from the charge. This defines the source’s radiation pattern, which will be at the same
frequency as the external field. For free space, n = 1, we would envision the associated

charge’s position x(t) as being perfectly in phase with the incoming radiation E(t), thus our
re-radiated wave E,(t) is also perfectly in phase.
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Figure 1.6 Electric field phase based on index. The refractive index is a statement about the
nature of the re-radiated light from a collection of units possessing induced currents. A phase
delay for Epsmar and Ejarge, Or advance in the case for E,4, is expected when compared to
the incident field. These might radiate as simple dipoles or more complex structures.
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1.5 The Six Velocities of Light

Long before Veselago’s paper was ‘rediscovered,” there were theoretical
descriptions of light traveling within a medium that worked out the physics of
the propagation of electromagnetic waves within and through some medium.
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Many of these descriptions are discussed in detail in a text written by Brillouin
(with acknowledgments to the chapter by Sommerfield)'? as a theoretical con-
struct for the description of electromagnetic waves, and in doing so illuminate
the reasons a negative index does not violate causality or other physical
laws. Metamaterials are necessarily dispersive, which dictates both the group
velocity v, and the phase velocity v,. A closer look into these propagation
phenomena in dispersive media is fundamental to ensuring that no nonphysical
results appear from theoretical models.

1.5.1 Free-space velocities

Following the notation used by Brillouin, we know that

et (1.34)

v Ho€o ’

where €; and . are the permittivity and permeability of free space, respectively,
as defined immediately following Egs. (1.5a)-(1.5d). Although it may seem
possible initially through metamaterial designs, it is important to note that
based on special relativity, information in a wave cannot travel faster through
space than this value.

The speed at which the phase of a specific frequency w, travels through
space is defined as the phase velocity:

(O]

where w is an individual frequency with k& = 2%, with k& being the wavenumber,

and \ is the wavelength of the individual frequency. In free space Eq. (1.35) is
simply v, = ¢. This velocity can be thought of as the motion of elementary
wavelets in the carrier depicted in Fig. 1.7.

The group velocity v, is defined as the speed at which a larger disturbance,
created by a packet or collection of waves with finite bandwidth, travels
through space. In free space the group velocity is not dependent on the
collection of frequencies that make up the wave packet, since

Modulation

NAVE RS

‘ Group ‘

Figure 1.7 Wave packet showing a combination of waves resulting in an envelope
modulation. These individual waves, each moving at their own v,,, of a carrier are causing
the larger modulation, which move at v,. (Adapted from Ref. 12.)
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Jw
U—vg—ak. (1.36)
The group can be thought of as the modulation impressed on the carrier and is
the result of a building up of some of the groups of individual wavelets into a
large amplitude that moves along with velocity v,.

We can now define the signal velocity, which governs the transfer of
information through a medium. Signal velocity S can be defined as the moment
when forced oscillations of the characteristic frequency of the incoming wave
become detectable in a medium. Generally speaking, the signal velocity refers to
the moment when oscillations are on the order of the magnitude of the input
signal, but this does not always need to be the case, as with a lossy material. In
free space, once again,

S=c=v, (1.37)

Energy velocity can also be defined depending on the medium. In a
nondispersive medium, or a medium with absorption far from the frequency
of the incoming signal, energy velocity can be defined as the group velocity.
However, in a dispersive medium, the energy velocity has to be defined as the
ratio of the Poynting vector to the energy density.

We can now define the last primary velocity, which is the front velocity.
The front velocity, or the velocity of the wavefront, is defined as the speed at
which the smallest and most minute disturbance of the field propagates
through a medium before the medium has time to respond. Since the
energies at the wavefront are so small, they are effectively undetectable, thus
representing a rather theoretical space where the wave exists. In Brillouin’s'?
derivation, the wave requires a finite beginning and end; otherwise, most of
the previous definitions become meaningless since the wave would otherwise
exist everywhere throughout space. In this case, the front velocity also has a
counterpart called the end velocity, which is created by the beginning of a
new wave of opposite phase but equal shape and amplitude. Through
destructive interference, these amplitudes cancel, thus equivalently destroy-
ing all oscillations in the carrier. Both of these are needed, as they set limits
on the other velocities.

1.5.2 Waves in a medium

The value of ¢ was defined in vacuum and does not change in a medium. It is
v, that is a function of » or k and that is dependent on the type of medium.
Lord Rayleigh used ocean waves as an example, showing that the group
velocity and phase velocity did not have to equal c¢. For electromagnetic
waves, phase velocity is determined by the reaction of local oscillators. In
typical metals we consider this to be made up of electrons, which usually have
a characteristic plasma frequency in the UV range. In the case where the phase
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velocity is near a local oscillator’s characteristic frequency or a resonance, the
phase velocity is now a function of the local oscillators in the medium; thus,
v, = v,(k, p, T) with k =2m/N as the wavenumber, p as the density of
oscillators, and 7 as the temperature. We can now also look at the group

velocity in a medium:

dw Gkvp v,
=—=—7%— L. 1.
e T Gk ok r +k ok (1.38)

Demonstration of differences in signal, group, and phase velocities can be
shown through the different paths of integration of two waves of opposite
phase but equal amplitude, one beginning at time ¢ = 0, the other at time
t =7 = nt with 7 equal to a single period (which is shown graphically in
Fig. 1.8):

n

1) = lr’w . _d<2_ﬁ)2 [e(=T) — gint] (1.39)

T

The most complicated velocity to predict in a dispersive medium is the
signal velocity. This requires rigorous work to define the time and space
between the wavefront and the onset of the first forced oscillations after
other sets of motions called forerunners. The forerunners exist before the
forced oscillations, thus they do not have the characteristic frequency of
the signal and in a dispersive medium actually follow two different paths.
An example of these forerunners is shown in Fig. 1.9 and further discussed in
Ref. 12.

Figure 1.8 Graphical representation of several velocities of light. This representation is
a result of taking different paths of integration from Eq. (1.39). A represents c¢/W, where
W = phase velocity; B represents c¢/U, where U = group velocity; C represents c/U, where
S = signal velocity; and D represents c/U;, where U; = energy velocity. (Adapted from
Ref. 12.)
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Figure 1.9 Schematic of wave propagation in a medium. The signal velocity can be
differentiated by the first two groups of forerunners through its characteristic frequency and
magnitude. (Adapted from Ref. 12.)

1.5.3 Superluminal speeds

The initial interest in metamaterials was to create phase velocities or group
velocities not found in nature that would clearly include those faster than
light or superluminal. There is no restriction on v, or v, in a dispersive
medium, but this still does not imply that the signal velocity is greater
than ¢, as Fig. 1.10 illustrates. This important consequence also shows some
of the theoretical limits of our previous derivations since we have, for the
most part, neglected the time evolution of the wave and considered only

steady state solutions.

Figure 1.10 lllustration of propagation in a medium. This is a demonstration of the
propagation speeds of the phase and wavefront, or ¢ as a function of distance in a medium.
(Adapted from Ref. 12.)
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