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Preface

This book is intended for anyone working in fields related to sensing for
autonomous flight. This includes:

• Managers who may need to understand how and why vision systems
are required for most autonomous flight scenarios.

• System engineers who must understand the strengths, limitations, and
requirements for vision systems.

• Sensor system engineers who must select sensor suites, architectures,
and algorithms.

• Regulators who must understand what can and cannot be expected
from sensing systems.

• Students and faculty in aeronautical engineering and related fields
(e.g., electrical engineering, physics, optics).

While this book can be read front to back, Chapters 1–3 deal with
motivations and requirements, and are recommended for all readers. Chapter
4 (Sensors) and 5 (Architectures) are aimed at both managers and system
engineers, while Chapter 6 (Algorithms) and the Appendix are aimed at
engineers tasked with selecting and implementing various algorithms.

Although metric units are preferred in most applications, the aviation
community commonly expresses altitude in feet, and speed in either miles per
hour (mi/h) or Mach number. In this book we will prefer metric units but will
employ the units that seem most likely to be intuitively understood by
members of the community.

Jack Sanders-Reed
August 2021
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Chapter 1

Introduction

“Don’t worry, we’ve never had anyone go up and not come back down” –Flight
instructor to new student pilot

This book addresses the following three basic questions related to vision-
enabled autonomous flight (VEAF):

1. Why are vision systems fundamental and critical to VEAF?

2. What are the vision system tasks required for autonomous flight?

3. How can those tasks be approached?

In order to answer these fundamental questions, we not only identify the
tasks to be performed but also use the existing gold standard, the human
vision system, as a benchmark and then examine non-human vision system
sensing technology.

Most vehicles (aircraft, automobiles, and ships) have historically relied on
the human visual system and processing to develop a dynamic world model of
the local environment in which the vehicle operates. This world model is the
basis on which almost all control decisions are made. While other senses
provide input (audio for the status of engines and for radio communication,
and feel for vibrations and g-forces), vision is the overwhelmingly dominant
source of input used to develop and maintain a current world model.

The role of sensing and development of a world model (whether human or
machine) is shown in Fig. 1.1. The two drivers of action are the sensor-derived
world model and the goal. Note that the databases in the upper path would be
the equivalent of life history, experience, and knowledge for a human.
Figure 1.1 also compares this model of sensing and world model to the
traditional observe, orient, decide, and act (OODA) decision loop first
described by US Air Force Colonel John Boyd [1].

When aircraft (and automobiles) were first introduced, all navigation,
processing, control, and decision-making was performed by the human
operator (pilot). Control surfaces to adjust attitude, throttle, and brakes were
manipulated by the operator using direct mechanical linkages. As these
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In the aerospace business, there is an F-106—in the National Museum of
the US Air Force (Wright–Patterson Air Force Base, Dayton, Ohio)—that in
1970 made an uncrewed landing in a corn field [6] after the pilot had ejected.
The F-106 had sufficient automation that the pilot was almost unnecessary! In
this case, the world model existed at headquarters, and the airplane was
simply given basic navigation and targeting data to operate on.

The point of the aforementioned two examples is to highlight that AI and
autonomous aircraft capabilities have existed for years. The biggest stumbling
block has been less about automation and AI than it is about sensing and
understanding the local environment, building the dynamic world model in
which the automation takes place. The constraint on Winograd’s blocks world
was that the system began with an accurate world model and the only changes
were those made by the system, in rearranging the blocks, so it always had an
up-to-date world model without a requirement for sensing changes introduced
by external actors.

Much of the early work on automation (such as the Winograd blocks
world) focused on the reasoning and decision aspects of autonomy while
deferring the sensing portion. Whereas Fig. 1.1 relates sensing to ultimate
actions, Fig. 1.3 provides a slightly different view of the engineering buildup
from sensing, through perception to development of a world view, to
ultimately provide input to an autonomous system. Any of these functions can
be implemented with either traditional algorithms or via what goes by various
terms such as AI / machine learning (ML), deep learning, or simply neural
networks.

Figure 1.3 Autonomous behaviors rely on a world view that is derived from machine
perception using input from the sensor data and a priori databases.
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Chapter 2

Autonomous Flight Tasks

Takeoffs are optional. Landings are mandatory.

2.1 VEAF Tasks

The first step in understanding the role of vision systems in developing a world
model for an autonomy engine is to identify the autonomy tasks that require a
vision-system-derived world model. In the following we use the term “vision”
or “vision system” to include both passive-imaging sensors [operating in the
visible through long-wave infrared (LWIR) bands] as well as active systems
such as 3D lidar or radar. The term “vision system” includes both the sensor
and the associated sensor data-processing algorithms. The vision-system-
based sensing and world-model-building phases of flight are

• Taxi

• Takeoff

• En-Route Navigation

• Obstacle Avoidance (Terrain and Airborne)

• Landing

• Formation Flight and Automated Air-to-Air Refueling (A3R)

An autonomous system must be able to perform these functions in all flying
conditions, which includes day or night, and in various degraded visual
environments (DVEs), such as rain, snow, fog/clouds, haze, and possibly
smoke or dust.

Algorithms implementing any of the above functionality should include
confidence factors for the solutions generated and in particular should be able
to indicate when no solution is possible. Further, as part of the safety case,
there should always be at least two independent solutions that can be
compared for consistency.

Specific numerical requirements, such as field of regard (FOR) or
detection range, will depend on the aircraft: speed, operational altitude and
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Chapter 3

Sensing Requirements

“What are the facts? Again and again, what are the facts? And to how many
significant digits? They are your only guide. If it can’t be expressed in numbers,
it’s opinion.” –Robert Heinlein

While the previous chapter established the basic autonomous flight
capabilities that benefit from or require vision systems, and further provided
a preliminary list of vision system functionality, in this chapter those
capability requirements are narrowed down to specific sensing requirements:
FOR, range, resolution and pixel counts, latency, and sensor phenomenology.
As previously noted, an autonomous system must be able to perform these
functions day or night, in DVEs, and must be able to identify when these
functions cannot be performed.

In this chapter we will use some nominal values such as aircraft sizes,
speeds, and decision heights to derive sensor parameters such as FOR and
resolution. These are not prescriptive, absolute numbers. Instead, we are
demonstrating a methodology to derive sensor parameters and generating
some generic numbers, both of which can be used until more platform- and
application-specific numbers can be generated.

The basic approach is to determine what must be detected (i.e., the
dimensions) and how long it will take to recognize the threat and perform an
appropriate action. We use DAA to illustrate the procedure. First, we
determine what class of airspace we will be operating in and the speed and size
of aircraft in that airspace. We also assume a reaction time to recognize the
threat and take evasive action. In the following we will assume 10 s for a total
recognition and maneuver time (this compares well with the cat-1 decision
height time until touchdown for a 737), but the reader may wish to select a
different reaction time based on the agility of their platform. Then we
determine the minimum range at which we need to detect the other aircraft,
assuming a worst-case, head-on closing scenario. If we need to estimate range
from passive imagery, we then assume a minimum number of pixels across
the target (5 px is a good number) to estimate the range based on the size of
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A comprehensive fixed wing sensor suite might consist of the following six
sensors (Fig. 3.1):

• Lidar #1 (short range):

◦ Forward-looking with a 180-deg� 25-deg FOR, 100-m range, and
0.25-mrad resolution. Generates 12,566� 1,745 samples per scan.

◦ Provides obstacle detection during taxi and gate operations.

• Visible sensor #1:

◦ Forward-looking with a 90-deg� 25-deg FOR and 0.3-mrad
resolution (5,236 px� 1,454 px).

◦ Primary: Detect and interpret color airport lighting and read airport
signage.

◦ Secondary:
▪ Provide detection of runway markings (edge, centerline, and

thresholds).
▪ Detect and interpret human airport-gate-personnel hand signs.

• Lidar #2 (long range):

Figure 3.1 Example of a comprehensive sensor suite.
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Chapter 4

Sensing Systems

Optics is light work.

4.1 Human Vision

Since a human operator using the basic human visual system has from the
beginning provided the world model, in which the human operates the vehicle,
we can use the human visual system to generate an initial baseline for
performance. Of course, as regulations develop for various functions, these
functions may impose somewhat different (greater or lesser) demands on an
autonomous vision system. The vehicle itself may limit certain aspects of the
human vision system, such as the FOR. Similarly, we must recognize the
limitations of the human visual system, including limited attention span.

FOR / FOV: The human can provide a 360-deg (4p steradian spherical to
be precise) FOR, and at any moment, a 210-deg-wide by 150-deg-high
binocular FOV [1]. The FOR in particular may be limited by the vehicle: in
most transport aircraft, the pilot can only see in front of the aircraft, which
drives certain rules of operation, such as the convention that an overtaking
vehicle is responsible for avoiding a leading vehicle. However, in contrast to a
transport aircraft with limited FOR, an automobile has 360-deg visibility (in a
2D plane) and hence has the responsibility to not move in front of a vehicle
approaching from the rear, while a fighter aircraft is designed to have as close
to 4p steradian visibility as possible.

Frame Rate and Latency: Broadcast video was established at 30 Hz (in the
US; 25 Hz in Europe) based on the human visual response. In general,
humans do not see variation at rates greater than 30 Hz (it is sometimes
possible to see, especially the European 25-Hz electric light flicker out of the
corner of the eye; the minimum temporal separation to distinguish two brief
light pulses is 15–20 ms), and the eye can see momentary changes such as a
flash or streak, which is of much shorter duration. In general, we can use
30 Hz as an upper limit on the video input rate from the human eye. This sets
an upper limit on the required frame rates and latency for vision systems in
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Chapter 5

Processing and Architectures

Experience is what you get when you are expecting something else.

You don’t need a parachute to sky dive. You only need a parachute to sky dive
more than once.

From a sensor perspective, a sensor generates raw data while subsequent
processing extracts information from the raw data. However, at a system
level, many people consider the sensor to include the front-end processing to
perform both low-level functions such as flat fielding, image clean-up,
greyscale management, compression, multisensor fusion, or stitching as
required, and higher-level functions such as object detection, characterization,
and tracking. This chapter provides a brief introduction to some of the sensor
system issues a designer should consider.

5.1 Architecture

Architectures need to support several major functions:

• Safety: This is foundational and must be built in from the start. Some
of the basic principles include redundancy, integrity, cross-checks, and
confidence measures. Good architectures should have no single-point
failures.

• Modular and upgradeable: Open systems with well-defined interfaces
allow one to replace, upgrade, or add new sensors or algorithms as
technology improves.

• Multiuse sensors: Within the constraints of cross-checks and redun-
dancy, we wish to minimize the number of sensors required on the
platform. An understanding of required FOVs, FORs, resolution, and
when sensors are needed for each function can provide insights into
how to minimize the total number of sensors.

• Off-nominal operations: The architecture should support contingencies
for off-nominal operations, whether due to internal or external factors.
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Chapter 6

Algorithms

What are the error bars? Everything is a probability distribution.

6.1 Terminology

Traditional algorithms, which we will refer to here as “conventional,” have
existed as long as digital computers (longer actually since an algorithm is just
a repeatable formula, such as a recipe), while machine learning (ML) has
recently received high levels of interest. Unfortunately, significant confusion
can arise over terminology. As such it is worth spending some time to clarify
our terminology. In this book we will use the following:

• Conventional algorithms: These can typically be diagramed with a flow
chart; they may include explicit mathematical formula but will almost
always consist of a set of discrete computational steps to be performed.
These will include many detection and tracking systems as well as
significant portions of photogrammetry such as triangulation or
MBPE. Conventional algorithms—when properly documented,
implemented, and tested—can be certified under current flight safety
regulations.

• Expert systems: These have traditionally been conventional algorithms
coded to capture the knowledge of human experts, such as doctors for
evaluating symptoms and creating a diagnosis. In many instances, these
systems could be thought of as a decision tree incorporating a
knowledge base and a rules engine to relate incoming data to the
knowledge database. More advanced versions could use probabilistic
decision trees and fuzzy logic. While these have traditionally been
implemented as conventional algorithms, there is no reason they could
not be implemented using neural networks and ML. Another example
of an expert system would be a chess program, whether programmed
explicitly with the rules of chess and various strategies, or trained as a
neural net. For our applications, expert systems are probably minimal
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6.6 Airborne Detect and Avoid

DAA requires that we detect other airborne objects and determine whether or
not they are on a collision course with our platform. This involves a two-step
process: (1) detect and track other airborne objects, and (2) determine if they
are on a collision course with out platform.

Radar has generally been the preferred sensor since it can provide direct
range measurements and it can penetrate clouds. However, passive-imaging
sensors (in particular LWIR) are attractive for their generally lower cost
compared with radar sensors and SWAP (making them particularly attractive,
for small platforms that cannot tolerate the SWAP requirements of radar) and
in some applications because they do not radiate. Radar and radar signal
processing is generally outside the scope of this text, so we will confine our
discussion to passive-imaging solutions.

Early (passive-imaging) DAA work focused on developing 4D trajecto-
ries for the detected objects and determining whether they would intersect
the ownship trajectory. As discussed elsewhere, stereo- or two-sensor
triangulation generally does not have sufficient range to generate useful
trajectories. This left either 2D tracking augmented by a cued (laser) range
finder or generating a synthetic baseline using ownship motion. There is a
general rule for synthetic baseline triangulation, which states that you must
be moving one derivative higher than the object you wish to range. Thus, for
stationary objects on the ground, simply flying over at constant velocity is
sufficient (leading to SFM algorithms), but for a target moving at constant
velocity you must be accelerating. This led to schemes in which once a target
was detected, the ownship had to execute a corkscrew maneuver to generate
the acceleration required to range the constant-velocity target. Imagine all
sorts of unmanned aircraft corkscrewing around the sky trying to passively
range other aircraft.

The key insight was that for DAA we do not really care about the other
aircraft trajectory per se. Instead, what we care about is time to impact [18].
Pilots judge a threat by whether or not it is moving in the FOV: a target which
is observed to be moving across your FOV is not a collision threat. In
contrast, an aircraft which is stationary in your FOV is either in formation
flight with you, or it is on a collision course!

Consider two cases, resolved and unresolved targets: As soon as the object
is resolved to more than a single PSF (i.e., has become at least a little bit larger
than the PSF), we can begin to put absolute bounds on the range if we assume
the largest object we will see is an Airbus A380 and the smallest is on the order
of a Cessna 172 Skyhawk. Before it is resolved we can still make some
estimates of range based on the time rate of change of intensity: if the percent
change in intensity is rapid we conclude that the time to impact is less than if
the percent change in intensity is small. This could be because the aircraft is
far away but closing fast or because it is much closer but closing more slowly.
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Chapter 7

Relevant Historical Aviation
Accidents

O'Toole’s commentary on Murphy’s Law: Murphy was an optimist!

A crash occurs when you run out of options.

Returning to the theme of safety, it may be worthwhile to review a few famous
aviation accidents, either related to failures of the vision system (pilot) or
where the human vision system was a key component of recovery from
another system failure. The purpose, of course, is to help ensure that any
vision system developed for automation does not repeat these tragedies.

7.1 Midair Collision: Failure of DAA

The midair collision between a United Airlines Douglas DC-7 and a Trans
World Airlines Lockheed L-1049 Super Constellation over Grand Canyon
National Park on 30 June, 1956 [1,2] led to the creation of the FAA in 1958. At
the time, it was not uncommon for aircraft flying near the Grand Canyon to
make a detour to fly low over the Grand Canyon to provide passengers a view
of this spectacular natural wonder from the air. The cause of the accident as
described by the Civil Aeronautics Board (CAB) report was that the aircraft
were both maneuvering around clouds and were unaware of each other, being
outside controlled or monitored airspace, until moments before impact. All 128
people on both flights died in the subsequent crash. Both aircraft had departed
Los Angeles International Airport at about the same time with one flight
headed to Kansas City and the other to Chicago Midway.

The story, as related to this author, was that the pilots of the two aircraft,
both departing the same place at about the same time, and knowing that the
Grand Canyon was on their flight paths, had said, “See you over the Grand
Canyon!”

The subsequent formation of the FAA reflected a common consensus
among the airline industry, aircraft manufacturers, and the US government
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Appendix

Triangulation Theory and
Coordinate Transformations

A.1 Basic Triangulation Equations

The basic equations for two-camera triangulation are [1]

xt ¼
x2 tan u1 � x1 tan u2 þ ðy1 � y2Þ tan u1 tan u2

ðtan u1 � tan u2Þ
(A1)

yt ¼
y1 tan u1 � y2 tan u2 þ ðx2 � x1Þ þ x2 � x1

ðtan u1 � tan u2Þ
(A2)

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xtÞ2 þ ðyi � ytÞ2

q
(A3)

hzti ¼ hri tanwi þ zii (A4)

where (x1, y1, z1) is the location of sensor 1; (x2, y2, z2) is the location of
sensor 2; u1 and u2 are the azimuth LOS to the target; w1 and w2 are the
elevation LOS to the target for sensors 1 and 2, respectively; and r1 and r2 are
the horizontal ranges to the target (x, y) location. The target is located at
(xt, yt, zt). The geometry is shown in Fig. A1.

(x1,y1,z1) (x2,y2,z2)

(xt,yt,zt)

+x

+y

1 - 2

baseline

sep

r1 r2

1 1

, ,

ri

(xt, zt)

x

z

(xi, zi)

i

Figure A1 Triangulation geometry showing sensor 1, sensor 2, and target related by
azimuth (u) and elevation (w) angles.
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