
The rest of this chapter consists of the introduction and explanation of a
newly defined image encryption algorithm known as the tensor transform-
based method of image encryption that is based on the tensor transformation
from Refs. 46 and 47. The tensor image encryption scheme uses a symmetric
key (thus, the key should be kept secret) and is able to perform grayscale
image encryption and decryption using MATLAB® on images of size 1024�
1024 in 1.3 s or less (one way, thus a total of 2.3 s or less) with correlation
values as low as 10�5. Note that the speed of encryption and decryption could
be magnitudes smaller if implemented in a lower-level language such as C+.
The tensor image encryption scheme (tensor transform-based method of
image encryption) can also be used to encrypt RGB color images by
encrypting each color channel separately, then recombining the channels to
produce the encrypted color image.

7.4 Image, Tensor Representation, and Fourier Transform

In this section, we describe the concept of the splitting of the 2D discrete
Fourier transform (2D DFT) by the 1D transforms of the signals that
uniquely represent the image. Such a representation is called the vector or
tensor representation and was developed by Grigoryan48–55 and later
described in detail by Grigoryan and Agaian in Refs. 46 and 56–62. Such
representation can also be used for Hadamard, Hartley, cosine, and other
unitary transformations.46,54,59,63,64

In many recent publications, these concepts with various applications in
digital image processing were published under various names, as mentioned
in Refs. 65–67. Such names include the discrete Radon transform,
fast multidimensional Radon transform, the finite Radon transform, a
new discrete transform based on the exact discrete Radon (or Mojette)
transform, the discrete periodic Radon transform, the orthogonal
discrete periodic Radon transform, and the generalized finite Radon
transform.

In tensor representation, the 2D grayscale image is presented as a set of
1D signals, and the 2D DFT of the image is calculated or defined by the 1D
DFTs of these signals. The mathematical structure of the 2D DFT is thus
revealed by a 1D signal, which we call the splitting signal of the image, or
simply the image signal. These splitting signals allow effective calculation of
the 2D DFT of the image as well as for processing the image through the
splitting signals. Such examples include image enhancement and image
restoration.68–77 The modification of the tensor representation, which removes
the redundancy of the tensor representation of the image when its size is, for
instance, a power of 2 or a prime odd number, is called the paired
representation and can effectively be used in image filtration, enhancement,
and compression.47,78–85
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For simplicity of calculation, we consider that the discrete image fn,m is of
the size N�N and is on the Cartesian lattice X5XN, N5 {(n, m); n, m5 0:
(N� 1)}. The general case of N�M images when N≠M is similarly
considered.46,47,79,80 The tensor representation of the image of size N�N is
defined as a set of splitting signals of length N each. In other words, this is a
unique transformation of the image into a set of 1D signals:

x ¼ xN,N : ff n,mg ! ff Tp,s
¼ ff p,s,t; t ¼ 0 : ðN � 1Þggðp,sÞ∈J .

This transformation is called the tensor transformation and was derived from
the properties of the 2D DFT of the image:

Fp,s ¼
XN�1

n¼0

XN�1

m¼0

f n,mWnpþms, p,s ¼ 0 : ðN � 1Þ,

where the kernel of the transform is W5WN5 exp(�2pi/N), and i25�1.
The components of the splitting signals are calculated as the sums
of the discrete image along the parallel lines passing through the notes of
the lattice:

f p,s,t ¼
X

ðn,mÞ∈X
ff n,m; npþms ¼ tmodNg, t ¼ 0 : ðN � 1Þ:

The tensor representation is a 2D frequency (p, s) and 1D time t
representation of the image. For each (p, s) from the subset J, the
corresponding splitting signal is fTp, s

5 {fp,s,t; t5 0 : (N� 1)}. In the notation
of this splitting signal fTp,s

, we use the cyclic group

Tp,s ¼ fðkpmodN, ksmodNÞ;k ¼ 0,1,2,: : : ,ðN � 1Þg

because the 2D DFT of the image at frequency points of this group is the
DFT of the spitting signal:

FkpmodN,ksmodN ¼ Fk ¼
XN�1

t¼0

f p,s,tWkt, k ¼ 0 : ðN � 1Þ:

As an example, Fig. 7.12(a) shows the maximum of stacked images of
green by fluorescence in situ hybridization (FISH) for detection of gene
copy numbers in cancer and other diseases86–88 of size 512� 512, while
Fig. 7.12(b) shows the splitting signal of length 512, which is generated by
the frequency point (p, s)5 (3,1). The 1D DFT of the splitting-signal in
absolute scale is shown in Fig. 7.12(c), and the 2D DFT of the image and
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the location of all frequency points of the cyclic group T3,1 are shown in
Fig. 7.12(d).

Given a triplet (p, s, t), where (p, s)∈X and t∈ {0,1,2,. . .N�1}, we define
the following set of points (n,m) of the lattice Vp,s,t ¼ fðn,mÞ;n,m ¼ 0 : ðN � 1Þ,
npþms ¼ tg, where l5 l mod N, and consider its characteristic function:

xp,s,tðn,mÞ ¼
�
1, if ðn,mÞ�Vp,s,t
0, otherwise:

(7.5)

The set Vp,s,t (if it is not empty) is the set of points (n,m) along a maximum
of pþ s parallel straight lines at the angle of φ5 arctg(s/p) to the horizontal
axis. In the square domain [0, N]� [0, N], the equations for the set Lp,s,t of
parallel lines are xpþ ys5 tþ kN, where k5 0 : (pþ s� 1). It is interesting to
note that the direction of parallel lines of Lp,s,t is perpendicular to the direction
of frequency points of the group Tp,s.

Figure 7.12 (a) 512� 512 original image, (b) the splitting signal fT3,1
, (c) the magnitude

1D DFT of this splitting signal, which is cyclically shifted to the middle, and (d) the
arrangement of values of the 1D DFT in the 2D DFT of the image at frequency points of
the set T3,1.

192 Chapter 7



Example 3: Tensor transform of an (8� 8) image
In the lattice X8,8 in the spatial domain (or the image plane), we consider

the generator (p, s)5 (2,1) and two sets of three parallel lines L1 ¼ L2,1,1 and
L2 ¼ L2,1,2 each. For the family L1, these parallel lines are

y1 : 2xþ y ¼ 1, y9 : 2xþ y ¼ 9, y17 : 2xþ y ¼ 17.

One point (0,1) of the set V2,1,1 lies on the first line of L1, four points (1,7),
(2,5), (3,3), (4,1) lie on the second line, and three points (5,7), (6,5), (7,3) lie on
the third line. Therefore, the first component of the splitting signal fT2,1

is
calculated as

f 2,1,1 ¼ ðf 0,1Þ þ ðf 1,7 þ f 2,5 þ f 3,3 þ f 4,1Þ þ ðf 5,7 þ f 6,5 þ f 7,3Þ:
The parallel lines of the family L2 are defined by

y2 : 2xþ y ¼ 2, y10 : 2xþ y ¼ 10, y18 : 2xþ y ¼ 18:

Therefore, the second component f2,1,2 of the splitting signal is calculated as

f 2,1,2 ¼ ðf 0,2 þ f 1,0Þ þ ðf 2,6 þ f 3,4 þ f 4,2 þ f 5,0Þ þ ðf 6,6 þ f 7,4Þ:
The disposition of the points lying on the parallel lines of these sets is given in
Fig. 7.13. The location of the frequency points of the group T2,1 is also shown.
Two parallel lines pass through these frequency points, which are defined in the
frequency plane (v1,v2) as l1: 2v2�v15 0 and l2: 2v2�v15 8. The parallel
lines l1 and l2 are perpendicular to the parallel lines of both sets L1 and L2.

Due to Eq. (7.4), the following two statements are valid:

1. The image fn,m can be presented as a set of splitting signals f (k)5 fTk
,

k5 1 : l, of length N each,

ff n,m;ðn,mÞ ∈ Xn,mg ↔ ff ð1Þ,f ð2Þ,f ð3Þ,: : : ,f ðlÞg.

Figure 7.13 The locations of points of sets V2,1,1 and V2,1,2 and frequency points of the
group T2,1.
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2. The 2D DFT of the image FN, N[ f ] can be split by 1D transforms
FN[ f

(k)] of the splitting signals:

FN,N ½ f � ¼ fFN ½ f ð1Þ�,FN ½ f ð2Þ�,FN ½ f ð3Þ�,: : : ,FN ½ f ðlÞ�g.
The number l of the splitting signals in such a representation (tensor

representation) is considered to be minimal. This number depends on N and can
be determined by the set of generators J5 JN,N for the splitting signals. This set is
defined as a set for which the totality of cyclic groups {Tp,s; (p, s)∈ JN,N} is an
irreducible covering of the discrete lattice of frequency points XN,N5 {(p, s) ; p, s
5 0 : (N� 1)}. Given N, one can construct different sets JN,N; however, their
cardinalities are equal. For cases when N5 4,5,7, and 8, we obtain l5 6,6,8, and
12, respectively. The following sets of generators can be considered:

J4,4 ¼ fð1,0Þ,ð1,1Þ,ð1,2Þ,ð1,3Þ,ð0,1Þ,ð2,1Þg,
J4,4 ¼ fð0,2Þ,ð1,1Þ,ð2,1Þ,ð3,1Þ,ð1,0Þ,ð1,2Þg,
J5,5 ¼ fð1,0Þ,ð1,1Þ,ð1,2Þ,ð1,3Þ,ð1,4Þ,ð0,1Þg,
J5,5 ¼ fð0,1Þ,ð1,1Þ,ð2,1Þ,ð3,1Þ,ð4,1Þ,ð1,0Þg,
J7,7 ¼ fð1,0Þ,ð1,1Þ,ð1,2Þ,ð1,3Þ,ð1,4Þ,ð1,5Þ,ð1,6Þ,ð0,1Þg,
J7,7 ¼ fð0,1Þ,ð1,1Þ,ð2,1Þ,ð3,1Þ,ð4,1Þ,ð5,1Þ,ð6,1Þ,ð1,0Þg,
J8,8 ¼ fð1,0Þ,ð1,1Þ,ð1,2Þ,ð1,3Þ,ð1,4Þ,ð1,5Þ,ð1,6Þ,ð0,1Þ,ð2,1Þ,ð4,1Þ,ð6,1Þg,
J8,8 ¼ fð0,1Þ,ð1,1Þ,ð2,1Þ,ð3,1Þ,ð4,1Þ,ð5,1Þ,ð6,1Þ,ð1,0Þ,ð1,2Þ,ð1,4Þ,ð1,6Þg:

Example 4: Tensor transform of a (4� 4) image
Consider that N5 4 and the following discrete image or (4� 4) matrix:

½f n,m� ¼

2
664

10 20 30 40
120 130 140 50
110 160 150 60
100 90 80 70

3
775.

The 2D DFT of this image is the following (4� 4) complex matrix:

½Fp,s� ¼

2
664

1360 �60� 180i 120 �60þ 180
�380� 100i �40þ 160i �60� 60i 80� 80i

�200 �60þ 20i �80 �60� 20i
�380þ 100i 80þ 80i �60þ 60i �40� 160i

3
775. (7.6)

We start with the generator (p, s)5 (0,1). It is not difficult to see that the
corresponding splitting signal fT0,1

5 {f0,1,t; t5 0 : 3} is {100,440,480,340}. The
four-point DFT of this signal equals

F4½ f T0,1
� ¼ f1360,� 380� 100i,� 200,� 380þ 100ig:
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