Photodetectors (PDs) are optoelectronic (O/E) devices to achieve optical-to-electrical conversion, which are essential and of great importance in optical communication, optoelectronic oscillator, etc. Measuring O/E frequency responses, including magnitude response and phase response, is a fundamental measurement processing in their development and application. Microwave photonics (MWP) is a promising solution to achieve ultrahigh-resolution characterization. However, the frequency measurement range is restricted by the relatively small working bandwidth of modulators. To enlarge the measurement range, an approach to measure magnitude response of O/E devices is proposed and experimentally presented. In the approach, two optical double-sideband (ODSB) signals with the carrier suppression are generated. One ODSB signal filtered out +1st-order sideband is used as the frequency-shifted carrier. By coupling the frequency-shifted carrier and the other ODSB signal, an asymmetrical ODSB signal is thus achieved and served as a probe signal. After square-law detection of a PD under test, a photocurrent is produced. Detecting the frequency downconversion component in the produced photocurrent, the magnitude response in the low-frequency regime is obtained. Similarly, the magnitude response in the high-frequency regime is observed via extracting the magnitude information of the frequency up-conversion component. Thanks to the MWP-based frequency conversion, the measurement range is doubled, and the nonlinear error is suppressed. Furthermore, an ultrahigh-frequency resolution up to Hz or even sub-Hz is theoretically achievable. In an experiment, a 20-GHz commercial PD is accurately measured using a 200-kHz resolution. A measurement range as large as 67 GHz is enabled by 33.5 GHz RF frequency sweeping.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.