Wide field small aperture telescopes (WFSATs) are commonly used for fast sky survey. Telescope arrays composed by several WFSATs are capable to scan sky several times per night. Huge amount of data would be obtained by them and these data need to be processed immediately. In this paper, we propose ARGUS (Astronomical taRGets detection framework for Unified telescopes) for real-time transit detection. The ARGUS uses a deep learning based astronomical detection algorithm implemented in embedded devices in each WFSATs to detect astronomical targets. The position and probability of a detection being an astronomical targets will be sent to a trained ensemble learning algorithm to output information of celestial sources. After matching these sources with star catalog, ARGUS will directly output type and positions of transient candidates. We use simulated data to test the performance of ARGUS and find that ARGUS can increase the performance of WFSATs in transient detection tasks robustly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.