High energy pulse self-compression in a hollow core waveguide filled with noble gases has been under intensive study. Here, its dependence on the input pulse group delay dispersion (GDD) and third order dispersion (TOD) is studied experimentally. Pulses with energy of 3 mJ, at a repetition rate of 1 kHz, with Fourier transform limited FWHM pulse duration of 24 fs from a Ti:sapphire laser amplifier system are focused into a 2 cm long, 150 μm inner diameter hollow core waveguide filled with 10 mbar argon gas for self-compression. The input pulse GDD and TOD are tuned by an acousto-optic programmable dispersive filter in the laser amplifier system and the output pulses after the waveguide are measured. We found that the pulses are optimally compressed along a diagonal line in the GDD-TOD plane, where the output pulses are near Fourier transform limited. However, along the other diagonal line the pulses are poorly compressed due to pre-pulses appearing. We also compared the spectral phases and temporal profiles of the output pulses at selected points along the two diagonal lines. Along the optimal compression diagonal line, the spectral phases are flatter and the temporal profiles are better comparing to the other diagonal line where the strong pre-pulses occur. Therefore, the optimal input pulse shapes for self-compression are those without pre-pulses. These input pulses can be found easily along the diagonal line where the GDD is decreasing with the TOD in the GDD-TOD plane.
The interaction between surface plasmon polariton (SPP) and acousto-optic tunable filter was studied. Acoustic wave was used to induce core mode to cladding mode coupling and eventually resulted in SPP generation at the fiber cladding surface. The interaction between optical fiber core mode, cladding mode and SPP mode is formulated by using mode coupling theory. The dielectric constant of SPP and light reflection coefficient on fiber surface was calculated using Nlayer model. Experimental studies were also carried out to verify the theory and simulation results. The existence of SPP at fiber surface boosted the acoustic assisted optical energy coupling from fiber core mode to TM and HE cladding mode but not to TE cladding mode, which agrees with the theoretical and simulation results. It provides a motion-free, high speed and full-electronic solution for generation and control of SPP with high flexibility and tunability.
KEYWORDS: Collagen, Near field scanning optical microscopy, Microscopes, Second-harmonic generation, Signal detection, Nonlinear optics, Optical fibers, Laser sintering, Atomic force microscopy, Imaging systems
As the most abundant protein in the human body, collagen has a very important role in vast numbers of bio-medical applications. The unique second order nonlinear properties of fibrillar collagen make it a very important index in nonlinear optical imaging based disease diagnosis of the brain, skin, liver, colon, kidney, bone, heart and other organs in the human body. The second-order nonlinear susceptibility of collagen has been explored at the macroscopic level and was explained as a volume-averaged molecular hyperpolarizability. However, details about the origin of optical second harmonic signals from collagen fibrils at the molecular level are still not clear. Such information is necessary for accurate interpolation of bio-information from nonlinear optical imaging techniques. The later has shown great potential in collagen based disease diagnosis methodologies. In this paper, we report our work using an atomic force microscope (AFM), near field (SNOM) and nonlinear laser scanning microscope (NLSM) to study the structure of collagen fibrils and other pro-collagen structures.
Two-photon fluorescence (TPE) and second harmonic generation (SHG) can been used to extract biological information
from tissues at the molecular level, which is blind to traditional microscopes. Through these two image contrast
mechanisms, a nonlinear laser scanning endoscope (NLSE) is able to image tissue cells and the extra cellular matrix
(ECM) through a special fiber and miniaturized scanner without the requirement of poisonous chemical staining.
Therefore, NLSE reserves high potential for in-vivo pathological study and disease diagnosis. However, the high cost
and bulky size of a NLSE system has become one of the major issues preventing this technology from practical clinical
operation. In this paper, we report a fiber laser based multi-modality NLSE system with compact size and low cost, ideal
for in-vivo applications in clinical environments. The demonstration of the developed NLSE nonlinear imaging
capability on different bio-structures in liver, retina and skin are also presented.
We demonstrate the first in-fiber light-induced bioactive biotin-functionalization via photobleaching fluorophore-conjugated biotin. Photobleaching the fluorophores generated free radicals that bind to the albumin-passivated inner surface of pure silica photonic crystal fiber. The subsequent attachment of dye-conjugated streptavidin to the bound biotin qualified the photo-immobilization process and demonstrated a potential for the construction of in-fiber macromolecular assemblies or multiplexes. Compared with other in-fiber bioactive coating methods, the proposed light-induced technique requires only a low-power light source, without the need for additional preactivation steps or toxic chemical reagents. This method, hence, enables a simple and compact implementation for potential biomedical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.