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ABSTRACT. Despite decades of research on the noradrenergic system, our understanding of its
impact on brain function and behavior remains incomplete. Traditional recording
techniques are challenging to implement for investigating in vivo noradrenergic
activity, due to the relatively small size and the position in the brain of the locus
coeruleus (LC), the primary location for noradrenergic neurons. However, recent
advances in optical and fluorescent methods have enabled researchers to study the
LC more effectively. Use of genetically encoded calcium indicators to image the
activity of noradrenergic neurons and biosensors that monitor noradrenaline release
with fluorescence can be an indispensable tool for studying noradrenergic activity. In
this review, we examine how these methods are being applied to record the nora-
drenergic system in the rodent brain during behavior.
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1 Introduction
The forebrain noradrenaline (NA) system primarily originates from neurons located in the locus
coeruleus (LC). LC neurons produce a diverse range of projections that result in NA innervation
of numerous cortical and subcortical areas.1–3 Despite the extensive projection network, the con-
ditions under which NA is released and the corresponding behavioral contexts have been difficult
to characterize. Studies using perturbation techniques and electrophysiological recordings of LC
neurons have suggested that LC is involved in innate behaviors such as sleep,4–10 arousal,6,11–14

stress15–19 and feeding,20,21 as well as cognitive processes including attention,22–25 learning,26–30

and memory.27,30–32 To refine our understanding of the function of the NA system, it is critical to
develop novel recording techniques that can accurately and reliably monitor the activity of iden-
tified LC-NA neurons in vivo.

The LC has a width of only 300 μm in mice33 and 1 mm in humans,34 and is located deep in
the pons, making it challenging to target with electrodes using stereotaxic coordinates. In addi-
tion, LC-NA neurons are intermingled with neurons expressing gamma-aminobutyric acid
(GABA)12,35–37 and other types of neurons,38–40 which can contaminate extracellular single-unit
recordings with non-NA releasing neurons. While photo-tagging, a method that combines
electrophysiology and optogenetics to record from genetically identified neuronal popula-
tions,41,42 has been used to record from LC-NA neurons, it only yields a limited number of
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identified neurons per recordings.12,26,28,32,43,44 Therefore, neurophotonics has democratized
research on the LC, making it more accessible to researchers beyond a few specialized labs.
In this review, we will discuss two methods that have been applied to record LC-NA activity
in the rodent brain and how they have advanced LC research. First, we will discuss how recent
research has used genetically encoded calcium indicators (GECIs) to monitor the activity of LC-
NA neurons and their projections with various imaging methods [Figs. 1(a) and 1(b)]. Second,
we will discuss the development of NA biosensors and how they have been applied to LC
research [Fig. 1(c)].

2 Illuminating LC Neuron Activity
GECIs are widely used to visualize neuronal activity, including LC-NA neurons.45,46 By genet-
ically targeting these indicators to NA cells, researchers can monitor their activity during behav-
ior. Various mouse lines have been used to genetically access LC-NA neurons through virus
injections, such as the dopamine beta-hydoxylase (DBH)-Cre mouse line where the Cre recom-
binase is expressed from the dopamine beta hydroxylase locus,47,48 and the norepinephrine trans-
porter (NET)-Cre mouse line that uses the NA transporter locus.22,49 Although the tyrosine
hydroxylase (TH)-Cre lines,47,50 where Cre is expressed from the tyrosine hydroxylase locus,
have also been used, recent evidence indicates lower specificity in targeting LC-NA neurons
using this approach.51 As an alternative to mouse lines expressing Cre recombinase, the synthetic
DBH promoter PRSx852 could be used to efficiently target LC-NA neurons,7,51,53 but it has not
yet been tested for expressing calcium indicators.

Once a calcium indicator is introduced into LC-NA neurons, calcium dynamics can be
assessed using either fiber photometry,4,20,54–56 providing population-level activity of LC-NA
neurons, or through microendoscopy, providing spatially resolved signals from each LC-NA
neuron.26,57 These measurements conducted at the population level of the LC have allowed
researchers to determine the behavioral context in which the NA system is broadly active.
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Fig. 1 Monitoring noradrenaline (NA) with light. Various techniques to monitor the NA system.
(a) LC somatic activity imaged with a genetically encoded calcium indicator (GECI).
(b) Imaging of NA+ axons expressing a GECI. (c) Imaging NA release in target regions with
G-protein coupled receptor (GPCR)-based biosensors. (d) Illustration of the LC projection system.
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Therefore, these techniques have advanced our understanding of LC-NA function in innate
behavior such as feeding,20 the link between sleep and stress,4 and maternal behavior,54 as well
as LC-NA role in cognitive processes such as sensory plasticity,55 learned behavior,26 exploita-
tion of a behavior,57 and fear memory formation.56

One important consideration when measuring the activity of all NA neurons at the level of
the LC is that it fails to account for the outputs of the NA system or subcellular differences within
LC-NA neurons. Recent anatomical evidence indicates that some LC-NA neurons selectively
project to specific regions of the brain.3,15,26,30,53,58–62 Furthermore, the activity of LC neurons
is not fully correlated between neurons,30,43,63 and this heterogeneous activity potentially sup-
ports functional modularity at the output level.15,26,30,59 Therefore, the overall activity of the LC
might not be a good predictor for NA release of a specific brain area.

To investigate projection specific activity of the NA system, researchers have quantified
calcium activity in axonal projections.64 To target LC-NA+ neurons, a strategy similar to somatic
calcium imaging can be used, but with extra consideration for the type of calcium indicator.
To successfully label LC-NA projections, green fluorescent protein (GFP)-based genetically
encoded calcium indicators (GCaMP) that are axon-targeted65,66 or that have a brighter baseline
fluorescence (e.g., GCaMP7b)26,67 are preferred. Axonal labeling with GCaMP can be achieved
using one of the aforementioned Cre-recombinase mouse lines, but labeling specificity can be
improved by injecting a retrograde virus expressing Cre or Flpo in a target area.68–70 Imaging of
LC-NA axons expressing GCaMP has been accomplished in the cerebral cortex and the cerebel-
lum using multiphoton imaging through a cranial window, to correlate LC-NA signals with
general behavioral states such as arousal and locomotion,12,71–77 with sensorimotor learning26,66

and with spatial reward learning.27 In addition, fiber photometry has been used in freely moving
animals to image LC-NA projections to the hippocampus during memory formation.56

In addition to LC axonal imaging, it is possible to record activity from selected populations
of LC-NA neurons using a microendoscope implanted at the surface of the LC.26,57 This approach
would allow for a comparison of the activity of projection-specific LC neurons within the same
animal. While this method is feasible in practice, to date, we have not observed any labs applying
microendoscopy in this context.

3 Monitoring the Release of Noradrenaline with Light
Electrophysiological recordings and the imaging of GECIs are instrumental for determining the
link between behavior and LC-NA activity. However, one important question remains as to what
the underlying dynamics of NA release associated with this activity are. Indeed, the cellular
mechanisms governing neurotransmitter release are complex, and the release of NA could be
not fully proportional to the firing activity of LC-NA neurons. This has been observed for
the dopaminergic system where cellular mechanisms present in axons can affect dopamine
release.78,79 Therefore, methods that directly assess the release of neurotransmitters are critical
for understanding NA dynamics. The use of classic detection methods, such as microdialysis-
coupled biochemical analysis, has allowed the study of NA release in target areas,80–82 but the
poor temporal and spatial resolution has prevented our understanding of the fast kinetics of NA
release or cellular-level NA signals that occur during behavior. To overcome these limitations,
fluorescent biosensors that track extracellular NA dynamics have been developed.

Two types of fluorescent biosensors exist: G-protein coupled receptor (GPCR) and non-
GPCR based sensors (Fig. 2). Currently, non-GPCR fluorescent sensors are either made from
neurotransmitter nanosensors83,84 or made from false neurotransmitters.85,86 Neurotransmitter
nanosensors, which are functionalized carbon nanotubes, have proven effective for detecting
dopamine or NA release in cultured neurons83 and striatal slices.84 However, their lack of selec-
tivity for NA over dopamine poses a challenge when applied to regions containing both neuro-
transmitters. Moreover, using these nanosensors in the intact brain has not been done yet. On the
other hand, fluorescent false neurotransmitter (FFN) are molecules that combines structural fea-
tures of a neurotransmitter with the fluorescent core of a fluorophore, thus they act as a substrate
for neurotransmitter transporters allowing them to enter synaptic vesicles [Fig. 2(a)].85,86 The
advantage of FFNs is that they act as a substrate for neurotransmitter transporters allowing them
to enter synaptic vesicles, thus they enable the imaging of neurotransmitter dynamics from single
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release sites. For example, false neurotransmitters enable the imaging of NA dynamics from
single axons in anesthetized mice after a systemic injection of amphetamines.85 Nonetheless,
the use of these methods in awake behaving animals will require further development.

GPCR-based biosensors are a predominant approach for monitoring volume signaling of
neurotransmitter release in the brain of awake behaving mice. The first iteration of such a tool
in cultured cells used fluorescence resonance energy transfer (FRET) to monitor the conforma-
tional switch of alpha-2 receptor when bound to NA.87 Application of this concept was then
made possible in vivo using a cell-based neurotransmitter fluorescent engineered reporters
(CNiFERs).76,88,89 In this approach, cells that express a specific GPCR receptor for the chosen
target (NA α1a receptor) trigger an increase in intracellular calcium concentration, which is then
detected by a genetically encoded FRET-based Ca2þ sensor88,89 [Fig. 2(b)]. These CNiFERs cells
can then be implanted in the brain region of interest to quantify the surrounding NA release.88,89

This technique presents a level of specificity and a temporal resolution that allowed previous
work to link NA release to LC axonal activity in the cortex.76 However, the need to implant
exogenous cells in specific brain regions limits the utility of this approach, notably it cannot
be combined with local measurements of neuronal activity.

To overcome these limitations, genetically encoded fluorescent sensors have rapidly become
a popular set of tools for quantifying neurotransmitter release90–92 [Fig. 2(c)]. Three families of
these new sensors exist for monitoring NA—GRABNE,

93,94 nLight,75,95,96 and MTRIANE
91—

which are modified versions of alpha-1 (nLightG/R), alpha-2 (GRABNE), and beta-2 (nLight
andMTRIANE) adrenergic receptors. These sensors can be stably expressed in specific cell types
of the brain for several months, making them compatible with a range of imaging methods,
including fiber photometry, two-photon imaging, and widefield imaging. Using either fiber pho-
tometry or two-photon imaging, researchers have used these sensors to uncover the temporal
dynamics of NA release associated with various behavioral states, such as sleep,4,8,9 the default
mode network,97 arousal,73,98 and the processing of aversive stimuli.75 These sensors have also
been instrumental in demonstrating the link between NA temporal dynamics and learning,26,99

as well as NA and memory consolidation.8,100

By imaging NA sensors in combination with optogenetics, researchers have begun to reveal
the link between LC neuronal activity and NA release in target regions.22,93,94,96,101 When com-
bining these tools, it is critical to select optically compatible molecules, to avoid any interference
between the excitation wavelengths of the opsin and the sensor. For example, by infecting
LC-NA neurons with a red-shifted opsin and expressing GRABNE in the thalamus and the basal
forebrain, researchers have demonstrated the interaction between the tonic and phasic modes of
LC firing and NA release during acute stress exposure.101 Multiplexing these biosensors with
other optical tools will potentially be transformative for our understanding of the NA system.
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Fig. 2 Imaging NA release in vivo with light. (a) Imaging NA release from bouton using FFN,
a fluorescent substrate for the NA transporter NET and the vesicular monoamine transporter 2.
(b) Imaging NA release using a CNiFERs. CNiFER cells expressing a NA GPCR are injected in a
target region. Upon binding with NA, the GPCR stimulates the release of calcium inside the cell,
which is detected by a FRET-based calcium sensor. (c) Imaging NA release with genetically
encoded fluorescent sensors expressed in cells of a target region. Upon binding with NA, the
modified GPCR coupled with a fluorescent protein exhibits a large fluorescent increase.
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Anatomical and functional evidence suggest that NA release is modular, making it prom-
ising to measure cortex-wide dynamics of NA release using widefield microscopy of genetically
encoded fluorescent sensors.102 A similar approach has been implemented for studying the
coordination of acetylcholine release and neuronal activity in different behavioral states,103

suggesting that widefield microscopy can be used for imaging NA release. A transgenic line
expressing the next-generation noradrenaline sensors was recently developed allowing meso-
scopic NA and calcium dynamics in dorsal cortex of awake mice.94 In addition, multi-site fiber
photometry104,105 could be used to track the release of NA in specific brain regions, as it has
recently been used for showing visual cortex specific NA signals.73 Another important applica-
tion is the cell-specific expression of NA sensors, which will enable us to determine if the endog-
enous release of NA differentially affects particular cell types in the brain, such as cortical
astrocytes.73,75,77,98,106 Overall, these genetically encoded fluorescent sensors are a powerful tool
for investigating NA release dynamics and have the potential to greatly enhance our understand-
ing of the NA system.

4 Conclusion and Future Directions
Neurophotonic methods have become an essential asset for studying NA and neurotransmitter sys-
tems during behavior. Using GECI, neurophotonics enable targeted recordings of LC-NA neurons
and axons, or monitoring fast temporal dynamics of NA release through fluorescent biosensors. As
other brain areas, such as nuclei A1, A2, A5, A7, and subcoeruleus, also express NA,107–111 we see
great opportunity for discovery by applying similar methods to these subdivisions of the central NA
system. On the other hand, with the expansion of the color palette of genetically encoded biosen-
sors, such as non-green GECIs,112,113 red-shifted dopamine and NA sensors,96,114,115 and far-red
genetically encoded voltage indicators,116 we expect a multiplication of studies that multiplex neu-
rophotonics methods to measure NA release in conjunction with other brain signals.98,101

Furthermore, the use of genetically encoded fluorescent sensors for NA eliminates the need for
transgenic approaches, thus measurements of fast NA dynamics can be performed in any animal
models. In summary, neurophotonics methods, in combination with genetically encoded biosen-
sors, have become indispensable for studying the LC-NA system’s function during behavior. As
these methods continue to evolve, they hold the potential to provide deeper insights into the under-
lying mechanisms of disorders associated with NA dysregulation.
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